Skip to content

Commit

Permalink
Merge pull request lukesonnet#22 from lukesonnet/lukesonnet/refactor
Browse files Browse the repository at this point in the history
Lukesonnet/refactor
  • Loading branch information
lukesonnet authored Feb 25, 2018
2 parents 94530f0 + ee49915 commit bdb0448
Showing 1 changed file with 19 additions and 79 deletions.
98 changes: 19 additions & 79 deletions R/inference.R
Original file line number Diff line number Diff line change
Expand Up @@ -109,17 +109,20 @@ inference.krls2 <- function(obj,
if (robust) {

# actually t(score)
score <- sapply(clusters, function(clust_ids) {
krls_gr_trunc(
obj$U[clust_ids, , drop = FALSE],
obj$D,
y[clust_ids],
obj$w[clust_ids],
yfitted[clust_ids],
obj$dhat,
obj$lambda / n
)
})
score <- do.call(
cbind,
lapply(clusters, function(clust_ids) {
krls_gr_trunc(
obj$U[clust_ids, , drop = FALSE],
obj$D,
y[clust_ids],
obj$w[clust_ids],
yfitted[clust_ids],
obj$dhat,
obj$lambda / n
)
})
)

vcov.d <- invhessian %*% tcrossprod(score) %*% invhessian

Expand Down Expand Up @@ -153,7 +156,9 @@ inference.krls2 <- function(obj,
if (robust) {

# actually t(score)
score <- sapply(clusters, function(clust_ids) {
score <- do.call(
cbind,
lapply(clusters, function(clust_ids) {
score_lambda <- length(clust_ids) * obj$lambda / n
krlogit_gr_trunc(
c(obj$dhat, obj$beta0hat),
Expand All @@ -163,8 +168,8 @@ inference.krls2 <- function(obj,
obj$w[clust_ids],
score_lambda
) * -1
})

})
)

vcov.d <- invhessian %*% tcrossprod(score) %*% invhessian

Expand Down Expand Up @@ -310,71 +315,6 @@ inference.krls2 <- function(obj,
return(z)
}


# First differences
firstdiffs <- function(object, n, p, h, vcov.c, vcov.d){

n <- nrow(object$X)

# compute marginal differences from min to max
Xall <- rbind(object$X, object$X)
Xall[1:n, p] <- max(object$X[, p])
Xall[(n+1):(2*n), p] <- min(object$X[, p])

getvar <- !is.null(vcov.c)

newdataK <- newKernel(X = object$X, newData = Xall, whichkernel = object$kernel, b = object$b)
if (object$loss == "leastsquares") {
pout <- predict_leastsquares(
newdataK = newdataK,
coeffs = object$coeffs,
vcov.c = vcov.c,
y = object$y,
se.fit = getvar
)

if (getvar) {
# multiply by 2 to correct for using data twice
var <- as.vector(t(h) %*% pout$vcov.fit %*% h) * 2
} else {
var <- NA
}

} else {
pout <- predict_logistic(
newdataK = newdataK,
dhat = object$dhat,
coeffs = object$coeffs,
beta0hat = object$beta0hat,
U = object$U,
D = object$D,
vcov.d = vcov.d,
se.fit = getvar
)

if (getvar) {
deriv.avgfd.logit <- crossprod(h, pout$deriv.logit)
vcov.avgfd <-
tcrossprod(deriv.avgfd.logit %*% vcov.d, deriv.avgfd.logit)
# multiply by 2 to correct for using data twice
var <- as.vector(vcov.avgfd) * 2
} else {
var <- NA
}
}

# store FD estimates
est <- t(h) %*% pout$fit

# all
diffs <- pout$fit[1:n] - pout$fit[(n + 1):(2 * n)]

fd <- c(diffs, var, est)

return(fd)
}


# First differences
firstdiffs <- function(object, n, p, h, vcov.c, vcov.d){

Expand Down

0 comments on commit bdb0448

Please sign in to comment.