Skip to content

Commit

Permalink
Move the common function to kernel funcs (PaddlePaddle#40422)
Browse files Browse the repository at this point in the history
* move the common function to kernel/funcs/sparse/

* add namespace

* rm unused file

* move func

* reuse code
  • Loading branch information
zhangkaihuo authored Mar 14, 2022
1 parent 67166ca commit 5ab2cec
Show file tree
Hide file tree
Showing 12 changed files with 333 additions and 280 deletions.
45 changes: 45 additions & 0 deletions paddle/phi/kernels/funcs/sparse/common_shape.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdint.h>

#include "paddle/phi/core/ddim.h"

namespace phi {
namespace funcs {
namespace sparse {

inline const DDim InferDenseDims(const DDim& x_dims,
const int64_t sparse_dim,
const int64_t non_zero_num) {
auto dense_dim = x_dims.size() - sparse_dim;
DDim values_dims;
if (dense_dim > 0) {
std::vector<int64_t> dense_dim_vec(dense_dim + 1);
dense_dim_vec[0] = non_zero_num;
memcpy(&dense_dim_vec[1],
x_dims.Get() + sparse_dim,
dense_dim * sizeof(x_dims[0]));
values_dims = phi::make_ddim(dense_dim_vec);
} else {
values_dims = phi::make_ddim({non_zero_num});
}
return values_dims;
}

} // namespace sparse
} // namespace funcs
} // namespace phi
170 changes: 170 additions & 0 deletions paddle/phi/kernels/funcs/sparse/convolution.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace funcs {
namespace sparse {

struct Dims4D {
int dims[4];
Dims4D(const int batch, const int x, const int y, const int z) {
dims[0] = batch;
dims[1] = z;
dims[2] = y;
dims[3] = x;
}
HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
inline HOSTDEVICE bool Check(const int& x,
const int& kx,
const int& pad,
const int& stride,
const int dilation,
const int kdim,
const int xdim) {
const int lower = x - dilation * kx + pad;
const int uper = x + (kdim - kx - 1) * dilation - pad;
return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
inline HOSTDEVICE bool Check(const Dims4D& dims,
const Dims4D& kernel_dims,
const Dims4D& paddings,
const Dims4D& dilations,
const Dims4D& strides,
const int x,
const int y,
const int z,
const int kx,
const int ky,
const int kz) {
bool x_valid = Check(
x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
bool y_valid = Check(
y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
bool z_valid = Check(
z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
return (x_valid && y_valid && z_valid);
}

template <typename Dim>
inline HOSTDEVICE int PointToIndex(const int& batch,
const int& x,
const int& y,
const int& z,
const Dim& dims) {
return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
y * dims[3] + x;
}

// TODO(zhangkaihuo): use division and multiply to optimize
// modulo operation
template <typename Dim>
inline HOSTDEVICE void IndexToPoint(
const int index, const Dim& dims, int* batch, int* x, int* y, int* z) {
int n = index;
*x = n % dims[3];
n /= dims[3];
*y = n % dims[2];
n /= dims[2];
*z = n % dims[1];
n /= dims[1];
*batch = n;
}

inline void GetOutShape(const DDim& x_dims,
const DDim& kernel_dims,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
DDim* out_dims) {
PADDLE_ENFORCE_EQ(
x_dims.size(),
5,
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
PADDLE_ENFORCE_EQ(kernel_dims.size(),
5,
phi::errors::InvalidArgument(
"the shape of kernel should be (D, H, W, C, OC)"));

// infer out shape
(*out_dims)[0] = x_dims[0];
(*out_dims)[4] = kernel_dims[4];
for (int i = 1; i < 4; i++) {
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) /
strides[i - 1] +
1;
}
}

inline void ResetSubmKernelSizeAndStrides(const DDim& kernel_dims,
std::vector<int>* paddings,
std::vector<int>* strides) {
for (uint64_t i = 0; i < paddings->size(); i++) {
(*paddings)[i] = kernel_dims[i] / 2;
(*strides)[i] = 1;
}
}

template <typename T, typename Context>
inline void SubmPreProcess(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& kernel,
const SparseCooTensor& out_grad,
const int in_channels,
const int out_channels,
const int half_kernel_size,
DenseTensor* kernel_grad,
DenseTensor* x_grad) {
auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
T* d_kernel_ptr = kernel_grad->data<T>();
blas.GEMM(CblasTrans,
CblasNoTrans,
x.non_zero_elements().dims()[1],
out_grad.non_zero_elements().dims()[1],
x.non_zero_elements().dims()[0],
static_cast<T>(1),
x.non_zero_elements().data<T>(),
out_grad.non_zero_elements().data<T>(),
static_cast<T>(0),
d_kernel_ptr + half_kernel_size * in_channels * out_channels);

// call gemm: d_x = out_grad * transpose(kernel)
// (n, out_channels) * (out_channels, in_channels)
T* x_grad_ptr = x_grad->data<T>();
blas.GEMM(CblasNoTrans,
CblasTrans,
out_grad.non_zero_elements().dims()[0],
in_channels,
out_grad.non_zero_elements().dims()[1],
static_cast<T>(1),
out_grad.non_zero_elements().data<T>(),
kernel.data<T>() + half_kernel_size * in_channels * out_channels,
static_cast<T>(0),
x_grad_ptr);
}

} // namespace sparse
} // namespace funcs
} // namespace phi
96 changes: 1 addition & 95 deletions paddle/phi/kernels/sparse/convolution_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,105 +18,11 @@ limitations under the License. */
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"

namespace phi {
namespace sparse {

struct Dims4D {
int dims[4];
Dims4D(const int batch, const int x, const int y, const int z) {
dims[0] = batch;
dims[1] = z;
dims[2] = y;
dims[3] = x;
}
HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
inline HOSTDEVICE bool Check(const int& x,
const int& kx,
const int& pad,
const int& stride,
const int dilation,
const int kdim,
const int xdim) {
const int lower = x - dilation * kx + pad;
const int uper = x + (kdim - kx - 1) * dilation - pad;
return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
inline HOSTDEVICE bool Check(const Dims4D& dims,
const Dims4D& kernel_dims,
const Dims4D& paddings,
const Dims4D& dilations,
const Dims4D& strides,
const int x,
const int y,
const int z,
const int kx,
const int ky,
const int kz) {
bool x_valid = Check(
x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
bool y_valid = Check(
y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
bool z_valid = Check(
z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
return (x_valid && y_valid && z_valid);
}

template <typename Dim>
inline HOSTDEVICE int PointToIndex(const int& batch,
const int& x,
const int& y,
const int& z,
const Dim& dims) {
return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
y * dims[3] + x;
}

template <typename Dim>
inline HOSTDEVICE void IndexToPoint(
const int index, const Dim& dims, int* batch, int* x, int* y, int* z) {
int n = index;
*x = n % dims[3];
n /= dims[3];
*y = n % dims[2];
n /= dims[2];
*z = n % dims[1];
n /= dims[1];
*batch = n;
}

inline void GetOutShape(const DDim& x_dims,
const DDim& kernel_dims,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
DDim* out_dims) {
PADDLE_ENFORCE_EQ(
x_dims.size(),
5,
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
PADDLE_ENFORCE_EQ(kernel_dims.size(),
5,
phi::errors::InvalidArgument(
"the shape of kernel should be (D, H, W, C, OC)"));

// infer out shape
(*out_dims)[0] = x_dims[0];
(*out_dims)[4] = kernel_dims[4];
for (int i = 1; i < 4; i++) {
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) /
strides[i - 1] +
1;
}
}

template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
const SparseCooTensor& x,
Expand Down
Loading

0 comments on commit 5ab2cec

Please sign in to comment.