Skip to content

Lecture notes and code for Machine Learning practical course on CMC MSU

Notifications You must be signed in to change notification settings

poltavski/ml-course-msu

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Семинары по машинному обучению, ВМК МГУ

Конспекты, код и прочие материалы к семинарам по машинному обучению, проводимым на ВМК МГУ.

[Таблица с результатами]

Почта для заданий: [email protected]

На семинары и работу ассистентов можно оставить отзыв: [анонимно без регистрации и смс]

Курс лекций на ФКН ВШЭ: [wiki] [материалы]

Правила выставления оценок

Итоговая контрольная работа:

  1. На последней лекции будет проведена контрольная работа, которая затронет все темы, изученные в течение семестра.
  2. Контрольная оценивается по двухбалльной шкале (зачет/незачет), незачет влечет за собой недопуск к экзамену.
  3. Студент, не получивший допуск, переписывает на экзамене контрольную. В случае успеха он сдает экзамен на первой пересдаче. В случае незачета он снова переписывает контрольную на первой пересдаче, и так далее.

Семинары:

Занятия

Дата Номер Тема Материалы ДЗ
7 сентября Семинар 1 Вводное занятие:
  • Основные термины в машинном обучении
  • Этапы решения задачи анализа данных
Конспект
14 сентября Семинар 2 Линейные методы:
  • Аналитическое решение линейной регрессии
  • Векторное дифференцирование
Конспект 1
Конспект 2
ДЗ
28 сентября Семинар 3 Метрические методы:
  • Особенности метрических методов: чувствительность к масштабу и шуму, проклятие размерности
  • Примеры метрик
  • Метрики на категориальных признаках
Конспект
5 октября Семинар 4 Метрические методы:
  • Locality-sensitive hashing
Конспект ДЗ
12 октября Семинар 5
  • Градиентный спуск
  • Регуляризация
    Конспект 1 (4-я глава)
    Конспект 2 (5-я глава)
    ДЗ (5-я задача)
    19 октября Семинар 6
    • Линейные модели классификации
    • Метрики качества классификации
      Конспект Задачи ДЗ

      Практические задания

      Обратите внимание, что по каждому заданию даётся два дедлайна: мягкий и жёсткий. За сдачу задания после мягкого дедлайна оценка понижается на 1 балл. Оценка за задание не может быть отрицательной.

      Задание 1:

      Условие

      Дата выдачи: 18.09.2017

      Мягкий дедлайн: 01.10.2017, 23:59 MSK

      Жёсткий дедлайн: 08.10.2017 23:59 MSK

      About

      Lecture notes and code for Machine Learning practical course on CMC MSU

      Resources

      Stars

      Watchers

      Forks

      Releases

      No releases published

      Packages

      No packages published

      Languages

      • Jupyter Notebook 99.5%
      • Other 0.5%