Skip to content
This repository has been archived by the owner on May 6, 2023. It is now read-only.

Commit

Permalink
Merge pull request AUTOMATIC1111#3199 from discus0434/master
Browse files Browse the repository at this point in the history
Add features to insert activation functions to hypernetworks
  • Loading branch information
AUTOMATIC1111 authored Oct 21, 2022
2 parents 12a97c5 + f8733ad commit a26fc28
Show file tree
Hide file tree
Showing 3 changed files with 23 additions and 11 deletions.
29 changes: 19 additions & 10 deletions modules/hypernetworks/hypernetwork.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,20 @@
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0

def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()

assert layer_structure is not None, "layer_structure mut not be None"
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"

linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
if activation_func == "relu":
linears.append(torch.nn.ReLU())
if activation_func == "leakyrelu":
linears.append(torch.nn.LeakyReLU())
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))

Expand All @@ -42,8 +46,9 @@ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=Fa
self.load_state_dict(state_dict)
else:
for layer in self.linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
if not "ReLU" in layer.__str__():
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()

self.to(devices.device)

Expand All @@ -69,7 +74,8 @@ def forward(self, x):
def trainables(self):
layer_structure = []
for layer in self.linear:
layer_structure += [layer.weight, layer.bias]
if not "ReLU" in layer.__str__():
layer_structure += [layer.weight, layer.bias]
return layer_structure


Expand All @@ -81,7 +87,7 @@ class Hypernetwork:
filename = None
name = None

def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
self.filename = None
self.name = name
self.layers = {}
Expand All @@ -90,11 +96,12 @@ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
self.activation_func = activation_func

for size in enable_sizes or []:
self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
)

def weights(self):
Expand All @@ -117,6 +124,7 @@ def save(self, filename):
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['activation_func'] = self.activation_func
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name

Expand All @@ -131,12 +139,13 @@ def load(self, filename):

self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.activation_func = state_dict.get('activation_func', None)

for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
)

self.name = state_dict.get('name', self.name)
Expand Down
3 changes: 2 additions & 1 deletion modules/hypernetworks/ui.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from modules.hypernetworks import hypernetwork


def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"

Expand All @@ -22,6 +22,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
add_layer_norm=add_layer_norm,
activation_func=activation_func,
)
hypernet.save(fn)

Expand Down
2 changes: 2 additions & 0 deletions modules/ui.py
Original file line number Diff line number Diff line change
Expand Up @@ -1224,6 +1224,7 @@ def refresh():
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"])

with gr.Row():
with gr.Column(scale=3):
Expand Down Expand Up @@ -1308,6 +1309,7 @@ def refresh():
new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
new_hypernetwork_activation_func,
],
outputs=[
train_hypernetwork_name,
Expand Down

0 comments on commit a26fc28

Please sign in to comment.