Skip to content

Experimentor is a C# library designed for refactoring important flows in C# applications. It offers a range of strategies for executing and comparing different code paths. Inspired by Githubs Scientist library for Ruby.

License

Notifications You must be signed in to change notification settings

ptrkrlsrd/Experimentor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Experimentor: A C# Refactoring Library

Experimentor is a versatile C# library designed for refactoring important flows in C# applications. It offers a range of strategies for executing and comparing different code paths. Inspired by Githubs Scientist library for Ruby.

Getting Started

To integrate Experimentor in your project, add it as a reference in your project file. This enables you to use its functionalities for running experiments using various strategies. (Note: The project is not currently pushed to Nuget).

Strategies

Experimentor supports several strategies:

  1. Simple setup default strategy (Comparative Experiment Strategy)
  2. Comparative Experiment Strategy
  3. Behaviour Selection Strategyy
  4. Random Selection Strategy

Here's how to use each strategy with the Experimentor builder, illustrated with test examples.

0. Simple setup default strategy (Comparative Experiment Strategy)

Runs the comparative experiment behavior. This works by running control and the candidate behaviours.

var builder = new ExperimentBuilder<int>(() => 42)
    .AddCandidate("candidate", () => 69)
    .Build();
var result = builder.Run();
// Result: Control behavior with value 42

1. Comparative Experiment Strategy

Runs the control behavior as well as all the candidates.

IExperimentStrategy<int>? builder = new ExperimentBuilder<int>(() => 42)
    .AddCandidate("candidate", () => 69)
    .UseComparativeExperimentStrategy()
    .OnCandidateCompleted((r) =>
    {
        Console.WriteLine($"Result: {r.Name} behavior with value {r.Value}");
    })
    .Build();

// Result: Control behavior with value 42

2. Behaviour Selection Strategy

Selects a specific behavior based on a custom selector.

var builder = new ExperimentBuilder<int>(() => 42)
    .AddCandidate("candidate", () => 69)
    .UseBehaviorSelectionStrategy((_, _) => "candidate")
    .Build();
var result = builder.Run();
// Result: Candidate behavior with value 69

3. Random Selection Strategy

Randomly selects between control and candidate behaviors.

var builder = new ExperimentBuilder<int>(() => 42)
    .AddCandidate("candidate", () => 69)
    .UseRandomSelectionStrategy(0.5) // Probability for control
    .Build();
var result = builder.Run();
// Result: Randomly selected behavior

Example

using Experimentor;
using Experimentor.Strategy;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        // Generate a random list of numbers
        var random = new Random();
        var numbers = Enumerable.Range(1, 100).Select(_ => random.Next(1, 100)).ToList();

        // Define the control behavior: Bubble Sort
        Func<List<int>> controlBehavior = () => BubbleSort(new List<int>(numbers));

        // Define a candidate behavior: QuickSort
        Func<List<int>> candidateBehavior = () => QuickSort(new List<int>(numbers), 0, numbers.Count - 1);

        // Build the experiment
        var experiment = new ExperimentBuilder<List<int>>(controlBehavior)
            .AddCandidate("QuickSort", candidateBehavior)
            .UseComparativeExperimentStrategy()
            .OnExperimentCompleted(result => 
            {
                Console.WriteLine($"Experiment completed. Control (BubbleSort) took {result.ControlDuration.TotalMilliseconds} ms, Candidate (QuickSort) took {result.CandidateResults["QuickSort"].duration.TotalMilliseconds} ms");
            })
            .Build();

        // Run the experiment
        var result = experiment.Run();

        // Output the results
        Console.WriteLine("Control (BubbleSort) result: " + string.Join(", ", result.ControlResult));
        Console.WriteLine("Candidate (QuickSort) result: " + string.Join(", ", result.CandidateResults["QuickSort"].result));
    }

    static List<int> BubbleSort(List<int> list)
    {
        int n = list.Count;
        for (int i = 0; i < n - 1; i++)  {
            for (int j = 0; j < n - i - 1; j++) {
                if (list[j] > list[j + 1])
                {
                    // Swap temp and arr[i]
                    int temp = list[j];
                    list[j] = list[j + 1];
                    list[j + 1] = temp;
                }
            }
        }
        return list;
    }

    static List<int> QuickSort(List<int> list, int low, int high)
    {
        if (low < high)
        {
            int pi = Partition(list, low, high);

            QuickSort(list, low, pi - 1);
            QuickSort(list, pi + 1, high);
        }
        return list;
    }

    static int Partition(List<int> list, int low, int high)
    {
        int pivot = list[high];
        int i = (low - 1);
        for (int j = low; j < high; j++)
        {
            if (list[j] < pivot)
            {
                i++;
                int temp = list[i];
                list[i] = list[j];
                list[j] = temp;
            }
        }
        int temp1 = list[i + 1];
        list[i + 1] = list[high];
        list[high] = temp1;
        return i + 1;
    }
}

Benchmark

Methodology

Tested using a random strategy with 1000 iterations, where 50% of the time the control behavior is selected. The control behavior is a simple function that performs a bubble sort, while the candidate behavior is a function that performs a quick sort.

Hardware

  • Macbook Pro 2023 (M2 Pro Max)
Method Mean Error StdDev Gen0 Allocated
RandomSelectionStrategy 318.78 us 3.137 us 2.934 us 1.9531 16.59 KB
RunControlBehaviour 551.35 us 0.587 us 0.521 us 1.9531 16.09 KB
RunCandidateBehaviour 77.65 us 0.108 us 0.095 us 1.9531 16.09 KB

License

Experimentor is licensed under the MIT License. For more details, see the LICENSE file in the repository.

About

Experimentor is a C# library designed for refactoring important flows in C# applications. It offers a range of strategies for executing and comparing different code paths. Inspired by Githubs Scientist library for Ruby.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages