forked from fastai/fastbook
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
62ac21d
commit 102e716
Showing
1 changed file
with
65 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
|
||
# Numpy and pandas by default assume a narrow screen - this fixes that | ||
from fastai2.vision.all import * | ||
from nbdev.showdoc import * | ||
from ipywidgets import widgets | ||
from pandas.api.types import CategoricalDtype | ||
|
||
import matplotlib as mpl | ||
# mpl.rcParams['figure.dpi']= 200 | ||
mpl.rcParams['savefig.dpi']= 200 | ||
mpl.rcParams['font.size']=12 | ||
|
||
set_seed(42) | ||
torch.backends.cudnn.deterministic = True | ||
torch.backends.cudnn.benchmark = False | ||
pd.set_option('display.max_columns',999) | ||
np.set_printoptions(linewidth=200) | ||
torch.set_printoptions(linewidth=200) | ||
|
||
import graphviz | ||
def gv(s): return graphviz.Source('digraph G{ rankdir="LR"' + s + '; }') | ||
|
||
def get_image_files_sorted(path, recurse=True, folders=None): return get_image_files(path, recurse, folders).sorted() | ||
|
||
|
||
# + | ||
# pip install azure-cognitiveservices-search-imagesearch | ||
|
||
from azure.cognitiveservices.search.imagesearch import ImageSearchClient as api | ||
from msrest.authentication import CognitiveServicesCredentials as auth | ||
|
||
def search_images_bing(key, term, min_sz=128): | ||
client = api('https://api.cognitive.microsoft.com', auth(key)) | ||
return L(client.images.search(query=term, count=150, min_height=min_sz, min_width=min_sz).value) | ||
|
||
|
||
# - | ||
|
||
def plot_function(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): | ||
x = torch.linspace(min,max) | ||
fig,ax = plt.subplots(figsize=figsize) | ||
ax.plot(x,f(x)) | ||
if tx is not None: ax.set_xlabel(tx) | ||
if ty is not None: ax.set_ylabel(ty) | ||
if title is not None: ax.set_title(title) | ||
|
||
# + | ||
from sklearn.tree import export_graphviz | ||
|
||
def draw_tree(t, df, size=10, ratio=0.6, precision=0, **kwargs): | ||
s=export_graphviz(t, out_file=None, feature_names=df.columns, filled=True, rounded=True, | ||
special_characters=True, rotate=False, precision=precision, **kwargs) | ||
return graphviz.Source(re.sub('Tree {', f'Tree {{ size={size}; ratio={ratio}', s)) | ||
|
||
|
||
# + | ||
from scipy.cluster import hierarchy as hc | ||
|
||
def cluster_columns(df, figsize=(10,6), font_size=12): | ||
corr = np.round(scipy.stats.spearmanr(df).correlation, 4) | ||
corr_condensed = hc.distance.squareform(1-corr) | ||
z = hc.linkage(corr_condensed, method='average') | ||
fig = plt.figure(figsize=figsize) | ||
hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=font_size) | ||
plt.show() |