forked from botradingblog1/python-algorithmic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3065999
commit 127d462
Showing
1 changed file
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import os | ||
import math | ||
import numpy as np | ||
import pandas as pd | ||
import datetime | ||
from datetime import date | ||
import pandas_ta as ta | ||
import matplotlib.pyplot as plt | ||
import plotly.graph_objects as go | ||
from plotly.subplots import make_subplots | ||
import datetime | ||
from yahoo_fin import stock_info as si | ||
from pandas.tseries.holiday import USFederalHolidayCalendar | ||
from pandas.tseries.offsets import CustomBusinessDay | ||
US_BUSINESS_DAY = CustomBusinessDay(calendar=USFederalHolidayCalendar()) | ||
|
||
|
||
def calculate_smas(df): | ||
df['SMA20'] = ta.sma(df["close"], length=20) | ||
df['SMA5'] = ta.sma(df["close"], length=5) | ||
df['SMA5_SMA20'] = df['SMA5'] / df['SMA20'] | ||
df['SMA5_SMA20_NORM'] = (df['SMA5_SMA20'] - df['SMA5_SMA20'].min()) / (df['SMA5_SMA20'].max() - df['SMA5_SMA20'].min()) | ||
|
||
return df | ||
|
||
|
||
def determine_market_trend(df): | ||
short_term_sentiment = round(df['SMA5_SMA20_NORM'].tail(20).mean(),2) | ||
|
||
return short_term_sentiment | ||
|
||
|
||
def load_daily_data(symbol): | ||
today = datetime.date.today() | ||
today_str = today.strftime("%Y-%m-%d") | ||
start_date = today - (220 * US_BUSINESS_DAY) | ||
start_date_str = datetime.datetime.strftime(start_date, "%Y-%m-%d") | ||
try: | ||
# Download data from Yahoo Finance | ||
df = si.get_data(symbol, start_date=start_date_str, end_date=today_str, index_as_date=False) | ||
return df | ||
except: | ||
print('Error loading stock data for ' + symbol) | ||
return None | ||
|
||
|
||
def plot_trend_indicator(df, name): | ||
fig = make_subplots(rows=2, cols=1) | ||
|
||
# Plot close price | ||
fig.add_trace(go.Line(x=df.index, y=df['close'], line=dict(color="blue", width=1), name=name), | ||
row=1, col=1) | ||
|
||
# SMAs | ||
fig.add_trace(go.Line(x=df.index, y=df['SMA20'], line=dict(color="#f95738", width=1), name="SMA 20"), | ||
row=1, col=1) | ||
fig.add_trace(go.Line(x=df.index, y=df['SMA5'], line=dict(color="#ee964b", width=1), name="SMA 5"), | ||
row=1, col=1) | ||
|
||
|
||
# Plot Indicator | ||
fig.add_trace(go.Line(x=df.index, y=df['SMA5_SMA20_NORM'], line=dict(color="#f95738", width=1), name="Short Term Trend Indicator"), | ||
row=2, col=1) | ||
|
||
|
||
fig.add_hline(y=0.5, row=2, col=1) | ||
|
||
fig.update_layout( | ||
title={'text': f"{name} Trend Indicator", 'x': 0.5}, | ||
autosize=True, | ||
width=800, height=800) | ||
fig.update_yaxes(autorange=True, fixedrange=False, secondary_y=True, row=1, col=1) | ||
fig.update_yaxes(range=[0,1], row=2, col=1) | ||
|
||
fig.write_image(f"{name}_trend_indictor.png") | ||
|
||
|
||
|
||
def get_market_sentiment(): | ||
# Retrieve prices for DOW | ||
dji_df = load_daily_data('^DJI') | ||
dji_df = calculate_smas(dji_df) | ||
dow_short_term_trend = determine_market_trend(dji_df) | ||
|
||
# NASDAQ | ||
nasdaq_df = load_daily_data('^IXIC') | ||
nasdaq_df = calculate_smas(nasdaq_df) | ||
nasdaq_short_term_trend = determine_market_trend(nasdaq_df) | ||
|
||
# S&P 500 | ||
snp_df = load_daily_data('^GSPC') | ||
snp_df = calculate_smas(snp_df) | ||
snp_short_term_trend = determine_market_trend(snp_df) | ||
|
||
# Crypto index | ||
crypto_df = load_daily_data('BITW') | ||
crypto_df = calculate_smas(crypto_df) | ||
crypto_short_term_trend = determine_market_trend(crypto_df) | ||
|
||
# Visualize results | ||
plot_trend_indicator(dji_df.tail(200), 'DJI') | ||
plot_trend_indicator(nasdaq_df.tail(200), 'NASDAQ') | ||
plot_trend_indicator(snp_df.tail(200), 'S&P') | ||
plot_trend_indicator(crypto_df.tail(200), 'BITW') | ||
|
||
combined_trend = (dow_short_term_trend + nasdaq_short_term_trend + snp_short_term_trend + crypto_short_term_trend) / 4 | ||
combined_trend = str(round(combined_trend,2)) | ||
print(combined_trend) | ||
|
||
get_market_sentiment() |