This code repo tackle the product detect problem. Given an image, the trained model needs to predict the category it belongs to.
Most of hyperparameters are configured inside main.py
, the main script to train/evaluate model.
- Number of epochs ->
FLAGS.epoch
- Batch size ->
FLAGS.batch_size
- Working dir ->
FLAGS.working_dir
- Image input size ->
FLAGS.im_size
- Training data path ->
FLAGS.training_data
- Test data path ->
FLAGS.test_data
- Learning rate ->
learning_rate
, default to 1e-4 - Starting learning decay iteration ->
lr_start_decay
, default to the 30-th epoch - Learning rate decay frequency ->
lr_decay_every
, default to every 10 epochs - Data augmentation mode ->
FLAGS.augmentation
, default to True - TF records ->
FLAGS.use_tfrecord
Execute:
python main.py
To monitor the training process:
tensorboard --logdir=model/summaries --port 5000
and nagigate to localhost:5000
on the web browser.