Skip to content

rajatpai/Medical-Image-Captioning-on-Chest-X-rays

 
 

Repository files navigation

Medical-Image-Captioning-on-Chest-X-rays

Medical imaging is the process of creating visual representations of the interior of a body for clinical analysis as well as visual representation of the function of some organs or tissues. They are widely used in hospitals and clinics to determine fractures and diseases. The medical images are read and interpreted by specialized medical professionals and their findings regarding each body of area examined are communicated via written Medical Reports. The process of writing medical reports usually takes around 5–10 minutes per report. In a day the doctors have to write medical reports that number in 100s which can take a lot of their time. The objective of this case study is to build a deep learning model that automatically write the impression part of medical report of chest X-rays and alleviate some of the burden of the medical professional. Here I will be taking a publicly available dataset from Indiana University which consists of chest X-ray images and reports (in XML format) which contain information regarding the findings and impression of the X-ray. The goal is to predict the impressions of the medical report attached to the images.

My detailed approach can be viewed in this medium article.

Streamlit App

Hnet-image

Results

Sl No. Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
1. Attention Model (greedy search) 0.306819 0.302596 0.339031 0.383689
2. Custom Final Model (greedy search) 0.214501 0.243265 0.303785 0.36675
3. Simple Encoder Decoder (greedy search) 0.317412 0.308454 0.333496 0.366244

Contents of the Code Files are given below :-

Code File Description
EDA_Medical_Report.ipynb Exploratory Data Analysis
2_Simple_encoder_decoder_Medical_Report.ipynb Simple Encoder Decoder Model
3_Attention_Model_Medical_Report.ipynb Attention Model
4_Custom_Final_Model.ipynb Model based on Q. Tang, F. Liu, T. Zhang, J. Jiang, Y. Zhang, Attention-guided Chained Context Aggregation for Semantic Segmentation (2020) paper
5_Final.ipynb Function 1 - takes input images, returns predicted caption,Function 2 - takes input images returns BLEU scores (This file contains full data pipeline)

About

Medical Image captioning on chest X-rays

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%