forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
#-*- coding:utf-8 -*- | ||
''' | ||
Author: Stephen Lee | ||
Date: 2017.9.21 | ||
BP neural network with three layers | ||
''' | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
class Bpnw(): | ||
|
||
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3): | ||
''' | ||
:param n_layer1: number of input layer | ||
:param n_layer2: number of hiden layer | ||
:param n_layer3: number of output layer | ||
:param rate_w: rate of weight learning | ||
:param rate_t: rate of threshold learning | ||
''' | ||
self.num1 = n_layer1 | ||
self.num2 = n_layer2 | ||
self.num3 = n_layer3 | ||
self.rate_weight = rate_w | ||
self.rate_thre = rate_t | ||
self.thre2 = -2*np.random.rand(self.num2)+1 | ||
self.thre3 = -2*np.random.rand(self.num3)+1 | ||
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1) | ||
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1) | ||
|
||
def sig(self,x): | ||
return 1 / (1 + np.exp(-1*x)) | ||
|
||
def sig_plain(self,x): | ||
return 1 / (1 + np.exp(-1*x)) | ||
|
||
def do_round(self,x): | ||
return round(x, 3) | ||
|
||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e = bool): | ||
''' | ||
:param patterns: the number of patterns | ||
:param data_train: training data x; numpy.ndarray | ||
:param data_teach: training data y; numpy.ndarray | ||
:param n_repeat: echoes | ||
:param error_accuracy: error accuracy | ||
:return: None | ||
''' | ||
data_train = np.asarray(data_train) | ||
data_teach = np.asarray(data_teach) | ||
print('-------------------Start Training-------------------------') | ||
print(' - - Shape: Train_Data ',np.shape(data_train)) | ||
print(' - - Shape: Teach_Data ',np.shape(data_teach)) | ||
rp = 0 | ||
all_mse = [] | ||
mse = 10000 | ||
while rp < n_repeat and mse >= error_accuracy: | ||
alle = 0 | ||
final_out = [] | ||
for g in range(np.shape(data_train)[0]): | ||
net_i = data_train[g] | ||
out1 = net_i | ||
|
||
net_j = out1 * self.vji.T - self.thre2 | ||
out2=self.sig(net_j) | ||
|
||
net_k = out2 * self.wkj.T - self.thre3 | ||
out3 = self.sig(net_k) | ||
|
||
# learning process | ||
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3)) | ||
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2)) | ||
#upgrade weight | ||
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight | ||
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight | ||
#upgrade threshold | ||
self.thre3 = self.thre3 - pd_k_all * self.rate_thre | ||
self.thre2 = self.thre2 - pd_j_all * self.rate_thre | ||
#calculate sum of error | ||
errors = np.sum(abs((data_teach[g] - out3))) | ||
|
||
alle = alle + errors | ||
final_out.extend(out3.getA().tolist()) | ||
final_out3 = [list(map(self.do_round,each)) for each in final_out] | ||
|
||
rp = rp + 1 | ||
mse = alle/patterns | ||
all_mse.append(mse) | ||
def draw_error(): | ||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))] | ||
plt.plot(all_mse, '+-') | ||
plt.plot(yplot, 'r--') | ||
plt.xlabel('Learning Times') | ||
plt.ylabel('All_mse') | ||
plt.grid(True,alpha = 0.7) | ||
plt.show() | ||
print('------------------Training Complished---------------------') | ||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse) | ||
print(' - - Last Output: ', final_out3) | ||
if draw_e: | ||
draw_error() | ||
|
||
def predict(self,data_test): | ||
''' | ||
:param data_test: data test, numpy.ndarray | ||
:return: predict output data | ||
''' | ||
data_test = np.asarray(data_test) | ||
produce_out = [] | ||
print('-------------------Start Testing-------------------------') | ||
print(' - - Shape: Test_Data ',np.shape(data_test)) | ||
print(np.shape(data_test)) | ||
for g in range(np.shape(data_test)[0]): | ||
|
||
net_i = data_test[g] | ||
out1 = net_i | ||
|
||
net_j = out1 * self.vji.T - self.thre2 | ||
out2 = self.sig(net_j) | ||
|
||
net_k = out2 * self.wkj.T - self.thre3 | ||
out3 = self.sig(net_k) | ||
produce_out.extend(out3.getA().tolist()) | ||
res = [list(map(self.do_round,each)) for each in produce_out] | ||
return np.asarray(res) | ||
|
||
|
||
def main(): | ||
#I will fish the mian function later | ||
pass | ||
|
||
if __name__ == '__main__': | ||
main() |