A simple dataframe (and how to collect the info) combining Nvidia GPU information from
-
data/nvidia_gpu_info.csv
contains the final data, also available here -
main.ipynb
contains the main notebook used to obtain the data -
analysis.ipynb
shows how to query the GPU info dataframe with pandas -
data
contains other partial csv tables
We're interested in a GPU with at least 12 GB of memory, a compute score of at least half of RTX 3090, costing less than $1000.00 used.
compute_score = (df.loc[df["Name"] == "RTX 3090"]["Performance Score"].values[0]) / 2.0
mask = (
(df["Performance Score"] > compute_score)
& (df["Memory Size (GB)"] > 12)
& (df["Used Price (eBay US) 2023-03-15"] < 1000)
)
df.loc[mask].sort_values("Used Price (eBay US) 2023-03-15")
giving
Unnamed: 0 | Name | Memory Size (GB) | Performance Score | Used Price (eBay US) 2023-03-15 | Score Per Price | Manufacturer | GPU Chip | Released | Bus | GPU clock | Memory clock | Memory Type | Memory Bus Width | Shaders | TMUs | ROPs | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 17 | RTX A4000 | 16 | 126692 | 489.99 | 258.56 | NVIDIA | GA104 | Apr 12th, 2021 | PCIe 4.0 x16 | 735 MHz | 1750 MHz | GDDR6 | 256 bit | 6144 | 192 | 96 |
13 | 13 | TITAN RTX | 24 | 138072 | 740 | 186.584 | NVIDIA | TU102 | Dec 18th, 2018 | PCIe 3.0 x16 | 1350 MHz | 1750 MHz | GDDR6 | 384 bit | 4608 | 288 | 96 |
5 | 5 | RTX 3090 | 24 | 204921 | 782.5 | 261.88 | NVIDIA | GA102 | Sep 1st, 2020 | PCIe 4.0 x16 | 1395 MHz | 1219 MHz | GDDR6X | 384 bit | 10496 | 328 | 112 |
10 | 10 | RTX A4500 | 20 | 144819 | 799.99 | 181.026 | NVIDIA | GA102 | Nov 23rd, 2021 | PCIe 4.0 x16 | 1050 MHz | 2000 MHz | GDDR6 | 320 bit | 7168 | 224 | 96 |
22 | 22 | Quadro RTX 5000 | 16 | 108130 | 899.99 | 120.146 | NVIDIA | TU104 | Aug 13th, 2018 | PCIe 3.0 x16 | 1620 MHz | 1750 MHz | GDDR6 | 256 bit | 3072 | 192 | 64 |