-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# BARS-CTR Benchmark | ||
|
||
BARS-CTR: An Open Benchmark for CTR Prediction https://openbenchmark.github.io/BARS/CTR | ||
|
||
Click-through rate (CTR) prediction (or user response prediction in general) is an important task in the ranking phase of recommender systems. The BARS project aims to build an open benchmark for CTR prediction, which consists of: | ||
|
||
+ [A curated list of CTR prediction models](./papers.md) which have been tagged into different topics, such as feature-interactions, behavior-sequence-modeling, multi-task learning, cross-domain modeling, AutoML, etc. | ||
|
||
+ [A collection of open datasets](https://github.com/reczoo/Datasets?tab=readme-ov-file#ctr-prediction) for CTR prediction research, and unique dataset IDs to track specific data splits of each dataset. | ||
|
||
+ [An open-source library for CTR prediction](https://github.com/reczoo/FuxiCTR) with stunning features in configurablity, tunablity, and reproduciblity. | ||
|
||
+ [The most comprehensive benchmarking results](./leaderboard/index.md) on tens of SOTA models and datasets. For each result, the detailed reproducing step is available along with the open-source benchmarking scripts. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# Avazu_x1 | ||
|
||
```{tip} | ||
See dataset settings: [avazu_x1](https://github.com/reczoo/Datasets/tree/main/Avazu/Avazu_x1) | ||
``` | ||
|
||
Benchmarking results on avazu_x1: | ||
|
||
|
||
```{tip} | ||
One can sort the table by clicking on column headers, or filter the results by searching keywords. | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# criteo_x1 | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# criteo_x4_001 | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# criteo_x4_002 | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# Benchmark Leaderboard | ||
|
||
```{tableofcontents} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
# CTR Prediction | ||
|
||
A curated list of CTR prediction models | ||
|
||
### Model List | ||
|
||
|
||
``````{tab-set} | ||
`````{tab-item} 2023 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| SIGIR'23 | [FinalNet](https://dl.acm.org/doi/10.1145/3539618.3591988) {cite}`FinalNet`<br>Huawei | AAAI'23 | [FinalMLP](https://arxiv.org/abs/2304.00902) {cite}`FinalMLP`<br>Huawei | SIGIR'23 | [EulerNet](https://arxiv.org/abs/2304.10711) {cite}`EulerNet`<br>Huawei | | ||
| CIKM'23 | [GDCN](https://arxiv.org/abs/2311.04635) {cite}`GDCN`<br>Microsoft | CIKM'23 | [MemoNet](https://arxiv.org/abs/2211.01334) {cite}`MemoNet`<br>Sina Weibo | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| KDD'23 | [TWIN](https://arxiv.org/abs/2302.02352) {cite}`TWIN`<br>Kuaishou | CIKM'23 | [DCIN](https://arxiv.org/pdf/2308.06037.pdf) {cite}`DCIN`<br>Meituan | | ||
``` | ||
```` | ||
````{admonition} Multi-Domain Learning | ||
:class: important | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| KDD'23 | [SATrans](https://dl.acm.org/doi/10.1145/3580305.3599936) {cite}`SATrans`<br>Tencent | | ||
``` | ||
```` | ||
````{admonition} Pretraining | ||
:class: warning | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| KDD'23 | [MAP](https://arxiv.org/abs/2308.01737) {cite}`MAP`<br>Huawei | KDD'23 | [BERT4CTR](https://arxiv.org/abs/2308.11527) {cite}`BERT4CTR`<br>Microsoft | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2022 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| SIGIR'22 | [FRNet](https://arxiv.org/abs/2204.08758) {cite}`FRNet`<br>Microsoft | NeurIPS'22 | [APG](https://arxiv.org/abs/2203.16218) {cite}`APG`<br>Alibaba | ICASSP'22 | [FINT](https://arxiv.org/abs/2107.01999) {cite}`FINT`<br>iQIYI | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| CIKM'22 | [SDIM](https://arxiv.org/abs/2205.10249) {cite}`SDIM`<br>Meituan | SDM'22 | [DINMP](https://arxiv.org/abs/2104.06312) {cite}`DINMP`<br>Alibaba | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2021 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| WWW'21 | [DCN-V2](https://arxiv.org/abs/2008.13535) {cite}`DCNv2`<br>Google | WWW'21 | [FM2](https://arxiv.org/abs/2102.12994) {cite}`FM2`<br>Yahoo | CIKM'21 | [EDCN](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) {cite}`EDCN`<br>Huawei | | ||
| CIKM'21 | [DESTINE](https://arxiv.org/abs/2101.03654) {cite}`DESTINE`<br>Alibaba | SIGIR'21 | [SAM](https://arxiv.org/abs/2105.05563) {cite}`SAM`<br>BOSS Zhipin | SIGIR'21 | [PCF-GNN](https://arxiv.org/abs/2105.07752) {cite}`PCF-GNN`<br>Alibaba | | ||
| SIGIR'21 | [xLightFM](https://dl.acm.org/doi/10.1145/3404835.3462941) {cite}`xLightFM` | KDD'21 | [AOANet](https://dl.acm.org/doi/10.1145/3447548.3467133) {cite}`AOANet`<br>Didi Chuxing | CIKM'21 | [DCAP](https://arxiv.org/abs/2105.08649) {cite}`DCAP` | | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| TKDD'21 | [CIN](https://dl.acm.org/doi/fullHtml/10.1145/3428079) {cite}`CIN` | CIKM'21 | [HyperCTR](https://arxiv.org/pdf/2109.02398) {cite}`HyperCTR` | | ||
``` | ||
```` | ||
````{admonition} Multi-Domain/Multi-Task Learning | ||
:class: important | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| CIKM'21 | [STAR](https://arxiv.org/abs/2101.11427) {cite}`STAR`<br>Alibaba | KDD'21 | [DASL](https://arxiv.org/abs/2106.02768) {cite}`DASL`<br>Alibaba | CIKM'21 | [MetaCTR](https://dl.acm.org/doi/abs/10.1145/3459637.3481912) {cite}`MetaCTR`<br>Baidu | | ||
``` | ||
```` | ||
````{admonition} Embedding Learning | ||
:class: warning | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| KDD'21 | [AutoDis](https://arxiv.org/abs/2012.08986) {cite}`AutoDis`<br>Huawei | KDD'21 | [DG-ENN](https://arxiv.org/abs/2106.00314) {cite}`DG-ENN`<br>Huawei | KDD'21 | [GME](https://arxiv.org/abs/2105.08909) {cite}`GME`<br>Alibaba | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2020 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| AAAI'20 | [AFN](https://ojs.aaai.org/index.php/AAAI/article/view/5768) {cite}`AFN` | CIKM'20 | [DeepIM](https://dl.acm.org/doi/10.1145/3340531.3412077) {cite}`DeepIM`<br>Alibaba | SIGIR'20 | [AutoGroup](https://dl.acm.org/doi/abs/10.1145/3397271.3401082) {cite}`AutoGroup`<br>Huawei | | ||
| NeurIPS'20 | [FWL](https://arxiv.org/abs/2012.00202) {cite}`FWL` | NeuralNet'20 | [ONN](https://arxiv.org/pdf/1904.12579) {cite}`ONN` | IJCAI'20 | [DIFM](https://www.ijcai.org/Proceedings/2020/0434.pdf) {cite}`DIFM` | | ||
| KDD'20 | [AutoFIS](https://arxiv.org/abs/2003.11235) {cite}`AutoFIS`<br>Huawei | KDD'20 | [AutoCTR](https://arxiv.org/abs/2007.06434) {cite}`AutoCTR`<br>Facebook | ICLR'20 |[GLIDER](https://arxiv.org/abs/2006.10966) {cite}`GLIDER`<br>Facebook | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| CIKM'20 | [DMIN](https://www.researchgate.net/profile/Luwei-Yang-2/publication/345125472_Deep_Multi-Interest_Network_for_Click-through_Rate_Prediction/links/5f9e1d6b458515b7cfaeffce/Deep-Multi-Interest-Network-for-Click-through-Rate-Prediction.pdf) {cite}`DMIN`<br>Alibaba | WWW'20 | [MARN](https://arxiv.org/abs/2003.07162) {cite}`MARN`<br>Alibaba | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2019 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| CIKM'19 | [AutoInt](https://arxiv.org/abs/1810.11921) {cite}`AutoInt` | CIKM'19 | [FiGNN](https://arxiv.org/abs/1910.05552) {cite}`FiGNN` | WWW'19 | [FGCNN](https://arxiv.org/abs/1904.04447) {cite}`FGCNN`<br>Huawei | | ||
| RecSys'19 | [FiBiNET](https://arxiv.org/abs/1905.09433) {cite}`FiBiNET`<br>Sina Weibo | AAAI'19 | [HFM](https://ojs.aaai.org//index.php/AAAI/article/view/4448) {cite}`HFM` | Arxiv'19 | [DLRM](https://arxiv.org/abs/1906.00091) {cite}`DLRM`<br>Facebook | | ||
| IJCAI'19 | [IFM](https://www.ijcai.org/proceedings/2019/203) {cite}`IFM` | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| IJCAI'19 | [DSIN](https://arxiv.org/abs/1905.06482) {cite}`DSIN`<br>Alibaba | AAAI'19 | [DIEN](https://arxiv.org/abs/1809.03672) {cite}`DIEN`<br>Alibaba | KDD'19 | [DSTN](https://arxiv.org/abs/1906.03776) {cite}`DSTN`<br>Alibaba | | ||
| KDD'19 | [MIMN](https://arxiv.org/abs/1905.09248) {cite}`MIMN`<br>Alibaba | DLP-KDD'19 | [BST](https://arxiv.org/abs/1905.06874) {cite}`BST`<br>Alibaba | SIGIR'19 | [GIN](https://arxiv.org/abs/2103.16164) {cite}`GIN`<br>Alibaba | | ||
``` | ||
```` | ||
````{admonition} Multi-Task Learning | ||
:class: important | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| IJCAI'19 | [DeepMCP](https://arxiv.org/abs/1906.04365) {cite}`DeepMCP`<br>Alibaba | SIGIR'19 | [MetaEmbedding](https://arxiv.org/abs/1904.11547) {cite}`MetaEmbedding` | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2018 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| WWW'18 | [FwFM](https://dl.acm.org/doi/10.1145/3178876.3186040) {cite}`FwFM`<br>Yahoo | KDD'18 | [xDeepFM](https://arxiv.org/pdf/1803.05170.pdf) {cite}`xDeepFM`<br>Microsoft | | ||
``` | ||
```` | ||
````{admonition} Behaviour Sequence Modeling | ||
:class: tip | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| KDD'18 | [DIN](https://www.kdd.org/kdd2018/accepted-papers/view/deep-interest-network-for-click-through-rate-prediction) {cite}`DIN`<br>Alibaba | | | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2017 | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | | | ||
| :---------:|:------:|:------:|:------:|:------:|:------:| | ||
| SIGIR'17 | [NFM](https://arxiv.org/abs/1708.05027) {cite}`NFM` | WWW'17 | [FFM](https://arxiv.org/pdf/1701.04099.pdf) {cite}`FFM2`<br>Criteo | ADKDD'17 | [DCN](https://arxiv.org/abs/1708.05123) {cite}`DCN`<br>Google | | ||
| IJCAI'17 | [DeepFM](https://arxiv.org/abs/1703.04247) {cite}`DeepFM`<br>Huawei | IJCAI'17 | [AFM](https://www.ijcai.org/proceedings/2017/0435.pdf) {cite}`AFM` | | ||
``` | ||
```` | ||
````` | ||
`````{tab-item} 2016&Before | ||
````{admonition} Feature Interaction | ||
```{table} | ||
:align: left | ||
:width: 94% | ||
| | | | | | ||
| :---------:|:------:|:------:|:------:| | ||
| RecSys'16 | [FFM](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) {cite}`FFM` | RecSys'16 | [YoutubeDNN](https://research.google.com/pubs/archive/45530.pdf) {cite}`YoutubeDNN`<br>Google | | ||
| ICDM'16| [PNN](https://arxiv.org/pdf/1611.00144.pdf) {cite}`PNN` | DLRS'16 |[Wide&Deep](https://arxiv.org/pdf/1606.07792.pdf) {cite}`WideDeep`<br>Google | | ||
| KDD'16 | [DeepCrossing](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) {cite}`DeepCrossing`<br>Microsoft | NIPS'16 | [HOFM](https://arxiv.org/abs/1607.07195) {cite}`HOFM` | | ||
|MM'16 | [DeepCTR](https://arxiv.org/abs/1609.06018) {cite}`DeepCTR` | CIKM'15 | [CCPM](https://arxiv.org/abs/1609.06018) {cite}`CCPM` | | ||
| ADKDD'14 | [LR+GBDT](https://arxiv.org/abs/1609.06018) {cite}`LR_GBDT`<br>Facebook |KDD'13 | [FTRL](https://research.google.com/pubs/archive/41159.pdf) {cite}`FTRL`<br>Google | | ||
|ICDM'10 | [FM](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf) {cite}`FM` | WWW'07 |[LR](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/predictingclicks.pdf) {cite}`LR`<br>Microsoft | | ||
``` | ||
```` | ||
````` | ||
`````` | ||
|
||
|
||
### Paper List | ||
|
||
```{bibliography} | ||
:style: unsrt | ||
:filter: docname in docnames | ||
``` |