Skip to content

Commit

Permalink
Add CTR
Browse files Browse the repository at this point in the history
  • Loading branch information
xpai committed Jan 3, 2024
1 parent 75d6246 commit 51b2110
Show file tree
Hide file tree
Showing 7 changed files with 290 additions and 0 deletions.
13 changes: 13 additions & 0 deletions docs/CTR/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# BARS-CTR Benchmark

BARS-CTR: An Open Benchmark for CTR Prediction https://openbenchmark.github.io/BARS/CTR

Click-through rate (CTR) prediction (or user response prediction in general) is an important task in the ranking phase of recommender systems. The BARS project aims to build an open benchmark for CTR prediction, which consists of:

+ [A curated list of CTR prediction models](./papers.md) which have been tagged into different topics, such as feature-interactions, behavior-sequence-modeling, multi-task learning, cross-domain modeling, AutoML, etc.

+ [A collection of open datasets](https://github.com/reczoo/Datasets?tab=readme-ov-file#ctr-prediction) for CTR prediction research, and unique dataset IDs to track specific data splits of each dataset.

+ [An open-source library for CTR prediction](https://github.com/reczoo/FuxiCTR) with stunning features in configurablity, tunablity, and reproduciblity.

+ [The most comprehensive benchmarking results](./leaderboard/index.md) on tens of SOTA models and datasets. For each result, the detailed reproducing step is available along with the open-source benchmarking scripts.
13 changes: 13 additions & 0 deletions docs/CTR/leaderboard/avazu_x1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Avazu_x1

```{tip}
See dataset settings: [avazu_x1](https://github.com/reczoo/Datasets/tree/main/Avazu/Avazu_x1)
```

Benchmarking results on avazu_x1:


```{tip}
One can sort the table by clicking on column headers, or filter the results by searching keywords.
```

3 changes: 3 additions & 0 deletions docs/CTR/leaderboard/criteo_x1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# criteo_x1


5 changes: 5 additions & 0 deletions docs/CTR/leaderboard/criteo_x4_001.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# criteo_x4_001




5 changes: 5 additions & 0 deletions docs/CTR/leaderboard/criteo_x4_002.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# criteo_x4_002




4 changes: 4 additions & 0 deletions docs/CTR/leaderboard/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Benchmark Leaderboard

```{tableofcontents}
```
247 changes: 247 additions & 0 deletions docs/CTR/papers.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
# CTR Prediction

A curated list of CTR prediction models

### Model List


``````{tab-set}
`````{tab-item} 2023
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| SIGIR'23 | [FinalNet](https://dl.acm.org/doi/10.1145/3539618.3591988) {cite}`FinalNet`<br>Huawei | AAAI'23 | [FinalMLP](https://arxiv.org/abs/2304.00902) {cite}`FinalMLP`<br>Huawei | SIGIR'23 | [EulerNet](https://arxiv.org/abs/2304.10711) {cite}`EulerNet`<br>Huawei |
| CIKM'23 | [GDCN](https://arxiv.org/abs/2311.04635) {cite}`GDCN`<br>Microsoft | CIKM'23 | [MemoNet](https://arxiv.org/abs/2211.01334) {cite}`MemoNet`<br>Sina Weibo |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| KDD'23 | [TWIN](https://arxiv.org/abs/2302.02352) {cite}`TWIN`<br>Kuaishou | CIKM'23 | [DCIN](https://arxiv.org/pdf/2308.06037.pdf) {cite}`DCIN`<br>Meituan |
```
````
````{admonition} Multi-Domain Learning
:class: important
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| KDD'23 | [SATrans](https://dl.acm.org/doi/10.1145/3580305.3599936) {cite}`SATrans`<br>Tencent |
```
````
````{admonition} Pretraining
:class: warning
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| KDD'23 | [MAP](https://arxiv.org/abs/2308.01737) {cite}`MAP`<br>Huawei | KDD'23 | [BERT4CTR](https://arxiv.org/abs/2308.11527) {cite}`BERT4CTR`<br>Microsoft |
```
````
`````
`````{tab-item} 2022
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| SIGIR'22 | [FRNet](https://arxiv.org/abs/2204.08758) {cite}`FRNet`<br>Microsoft | NeurIPS'22 | [APG](https://arxiv.org/abs/2203.16218) {cite}`APG`<br>Alibaba | ICASSP'22 | [FINT](https://arxiv.org/abs/2107.01999) {cite}`FINT`<br>iQIYI |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| CIKM'22 | [SDIM](https://arxiv.org/abs/2205.10249) {cite}`SDIM`<br>Meituan | SDM'22 | [DINMP](https://arxiv.org/abs/2104.06312) {cite}`DINMP`<br>Alibaba |
```
````
`````
`````{tab-item} 2021
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| WWW'21 | [DCN-V2](https://arxiv.org/abs/2008.13535) {cite}`DCNv2`<br>Google | WWW'21 | [FM2](https://arxiv.org/abs/2102.12994) {cite}`FM2`<br>Yahoo | CIKM'21 | [EDCN](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) {cite}`EDCN`<br>Huawei |
| CIKM'21 | [DESTINE](https://arxiv.org/abs/2101.03654) {cite}`DESTINE`<br>Alibaba | SIGIR'21 | [SAM](https://arxiv.org/abs/2105.05563) {cite}`SAM`<br>BOSS Zhipin | SIGIR'21 | [PCF-GNN](https://arxiv.org/abs/2105.07752) {cite}`PCF-GNN`<br>Alibaba |
| SIGIR'21 | [xLightFM](https://dl.acm.org/doi/10.1145/3404835.3462941) {cite}`xLightFM` | KDD'21 | [AOANet](https://dl.acm.org/doi/10.1145/3447548.3467133) {cite}`AOANet`<br>Didi Chuxing | CIKM'21 | [DCAP](https://arxiv.org/abs/2105.08649) {cite}`DCAP` | |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| TKDD'21 | [CIN](https://dl.acm.org/doi/fullHtml/10.1145/3428079) {cite}`CIN` | CIKM'21 | [HyperCTR](https://arxiv.org/pdf/2109.02398) {cite}`HyperCTR` |
```
````
````{admonition} Multi-Domain/Multi-Task Learning
:class: important
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| CIKM'21 | [STAR](https://arxiv.org/abs/2101.11427) {cite}`STAR`<br>Alibaba | KDD'21 | [DASL](https://arxiv.org/abs/2106.02768) {cite}`DASL`<br>Alibaba | CIKM'21 | [MetaCTR](https://dl.acm.org/doi/abs/10.1145/3459637.3481912) {cite}`MetaCTR`<br>Baidu |
```
````
````{admonition} Embedding Learning
:class: warning
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| KDD'21 | [AutoDis](https://arxiv.org/abs/2012.08986) {cite}`AutoDis`<br>Huawei | KDD'21 | [DG-ENN](https://arxiv.org/abs/2106.00314) {cite}`DG-ENN`<br>Huawei | KDD'21 | [GME](https://arxiv.org/abs/2105.08909) {cite}`GME`<br>Alibaba |
```
````
`````
`````{tab-item} 2020
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| AAAI'20 | [AFN](https://ojs.aaai.org/index.php/AAAI/article/view/5768) {cite}`AFN` | CIKM'20 | [DeepIM](https://dl.acm.org/doi/10.1145/3340531.3412077) {cite}`DeepIM`<br>Alibaba | SIGIR'20 | [AutoGroup](https://dl.acm.org/doi/abs/10.1145/3397271.3401082) {cite}`AutoGroup`<br>Huawei |
| NeurIPS'20 | [FWL](https://arxiv.org/abs/2012.00202) {cite}`FWL` | NeuralNet'20 | [ONN](https://arxiv.org/pdf/1904.12579) {cite}`ONN` | IJCAI'20 | [DIFM](https://www.ijcai.org/Proceedings/2020/0434.pdf) {cite}`DIFM` |
| KDD'20 | [AutoFIS](https://arxiv.org/abs/2003.11235) {cite}`AutoFIS`<br>Huawei | KDD'20 | [AutoCTR](https://arxiv.org/abs/2007.06434) {cite}`AutoCTR`<br>Facebook | ICLR'20 |[GLIDER](https://arxiv.org/abs/2006.10966) {cite}`GLIDER`<br>Facebook |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| CIKM'20 | [DMIN](https://www.researchgate.net/profile/Luwei-Yang-2/publication/345125472_Deep_Multi-Interest_Network_for_Click-through_Rate_Prediction/links/5f9e1d6b458515b7cfaeffce/Deep-Multi-Interest-Network-for-Click-through-Rate-Prediction.pdf) {cite}`DMIN`<br>Alibaba | WWW'20 | [MARN](https://arxiv.org/abs/2003.07162) {cite}`MARN`<br>Alibaba |
```
````
`````
`````{tab-item} 2019
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| CIKM'19 | [AutoInt](https://arxiv.org/abs/1810.11921) {cite}`AutoInt` | CIKM'19 | [FiGNN](https://arxiv.org/abs/1910.05552) {cite}`FiGNN` | WWW'19 | [FGCNN](https://arxiv.org/abs/1904.04447) {cite}`FGCNN`<br>Huawei |
| RecSys'19 | [FiBiNET](https://arxiv.org/abs/1905.09433) {cite}`FiBiNET`<br>Sina Weibo | AAAI'19 | [HFM](https://ojs.aaai.org//index.php/AAAI/article/view/4448) {cite}`HFM` | Arxiv'19 | [DLRM](https://arxiv.org/abs/1906.00091) {cite}`DLRM`<br>Facebook |
| IJCAI'19 | [IFM](https://www.ijcai.org/proceedings/2019/203) {cite}`IFM` |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| IJCAI'19 | [DSIN](https://arxiv.org/abs/1905.06482) {cite}`DSIN`<br>Alibaba | AAAI'19 | [DIEN](https://arxiv.org/abs/1809.03672) {cite}`DIEN`<br>Alibaba | KDD'19 | [DSTN](https://arxiv.org/abs/1906.03776) {cite}`DSTN`<br>Alibaba |
| KDD'19 | [MIMN](https://arxiv.org/abs/1905.09248) {cite}`MIMN`<br>Alibaba | DLP-KDD'19 | [BST](https://arxiv.org/abs/1905.06874) {cite}`BST`<br>Alibaba | SIGIR'19 | [GIN](https://arxiv.org/abs/2103.16164) {cite}`GIN`<br>Alibaba |
```
````
````{admonition} Multi-Task Learning
:class: important
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| IJCAI'19 | [DeepMCP](https://arxiv.org/abs/1906.04365) {cite}`DeepMCP`<br>Alibaba | SIGIR'19 | [MetaEmbedding](https://arxiv.org/abs/1904.11547) {cite}`MetaEmbedding` |
```
````
`````
`````{tab-item} 2018
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| WWW'18 | [FwFM](https://dl.acm.org/doi/10.1145/3178876.3186040) {cite}`FwFM`<br>Yahoo | KDD'18 | [xDeepFM](https://arxiv.org/pdf/1803.05170.pdf) {cite}`xDeepFM`<br>Microsoft |
```
````
````{admonition} Behaviour Sequence Modeling
:class: tip
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| KDD'18 | [DIN](https://www.kdd.org/kdd2018/accepted-papers/view/deep-interest-network-for-click-through-rate-prediction) {cite}`DIN`<br>Alibaba | | |
```
````
`````
`````{tab-item} 2017
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | | | |
| :---------:|:------:|:------:|:------:|:------:|:------:|
| SIGIR'17 | [NFM](https://arxiv.org/abs/1708.05027) {cite}`NFM` | WWW'17 | [FFM](https://arxiv.org/pdf/1701.04099.pdf) {cite}`FFM2`<br>Criteo | ADKDD'17 | [DCN](https://arxiv.org/abs/1708.05123) {cite}`DCN`<br>Google |
| IJCAI'17 | [DeepFM](https://arxiv.org/abs/1703.04247) {cite}`DeepFM`<br>Huawei | IJCAI'17 | [AFM](https://www.ijcai.org/proceedings/2017/0435.pdf) {cite}`AFM` |
```
````
`````
`````{tab-item} 2016&Before
````{admonition} Feature Interaction
```{table}
:align: left
:width: 94%
| | | | |
| :---------:|:------:|:------:|:------:|
| RecSys'16 | [FFM](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) {cite}`FFM` | RecSys'16 | [YoutubeDNN](https://research.google.com/pubs/archive/45530.pdf) {cite}`YoutubeDNN`<br>Google |
| ICDM'16| [PNN](https://arxiv.org/pdf/1611.00144.pdf) {cite}`PNN` | DLRS'16 |[Wide&Deep](https://arxiv.org/pdf/1606.07792.pdf) {cite}`WideDeep`<br>Google |
| KDD'16 | [DeepCrossing](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) {cite}`DeepCrossing`<br>Microsoft | NIPS'16 | [HOFM](https://arxiv.org/abs/1607.07195) {cite}`HOFM` |
|MM'16 | [DeepCTR](https://arxiv.org/abs/1609.06018) {cite}`DeepCTR` | CIKM'15 | [CCPM](https://arxiv.org/abs/1609.06018) {cite}`CCPM` |
| ADKDD'14 | [LR+GBDT](https://arxiv.org/abs/1609.06018) {cite}`LR_GBDT`<br>Facebook |KDD'13 | [FTRL](https://research.google.com/pubs/archive/41159.pdf) {cite}`FTRL`<br>Google |
|ICDM'10 | [FM](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf) {cite}`FM` | WWW'07 |[LR](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/predictingclicks.pdf) {cite}`LR`<br>Microsoft |
```
````
`````
``````


### Paper List

```{bibliography}
:style: unsrt
:filter: docname in docnames
```

0 comments on commit 51b2110

Please sign in to comment.