Skip to content

Commit

Permalink
Update benchmarks with FuxiCTR_v1.2.2
Browse files Browse the repository at this point in the history
  • Loading branch information
xpai authored and xpai committed Nov 6, 2022
1 parent 88d3a0f commit 86dabe8
Show file tree
Hide file tree
Showing 294 changed files with 14,888 additions and 16,518 deletions.
2 changes: 1 addition & 1 deletion LICENSE
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2021 BARS
Copyright (C) 2022 The BARS Project.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Expand Down
15 changes: 7 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,21 +1,20 @@
# BARS
# BARS

Towards Open Benchmarking for Recommender Systems: https://openbenchmark.github.io
A First Step Towards Open Benchmarking for Recommender Systems: https://openbenchmark.github.io

Despite the significant progress made in both research and practice of recommender systems over the past two decades, there is a lack of a widely-recognized benchmarking suite in this field. This not only increases the difficulty in reproducing existing studies, but also incurs inconsistent experimental results among them, which largely limit the practical value and potential impact of research in this field. In this project, we present our initiative project aimed for open benchamrking for recommender systems. The benchmarking project allows anyone to easily follow and contribute, and hopefully drive more solid and reproducible research on recommender systems.
Despite the significant progress made in both research and practice of recommender systems over the past two decades, there is a lack of a widely-recognized benchmark in this field. This not only increases the difficulty in reproducing existing studies, but also incurs inconsistent experimental results among them, which largely limit the practical value and potential impact of research in this field. In this project, we make our initiative efforts towards open benchamrking for recommender systems. The BARS benchmark project allows anyone to easily follow and contribute, and hopefully drive more solid and reproducible research on recommender systems.

The BARS benchmark currently covers the following two tasks.

+ [CTR Prediction](./ctr_prediction)
+ [Candidate Item Matching](./candidate_matching)

+ [BarsCTR: A Benchmark for CTR Prediction](./ctr_prediction)
+ [BarsMatch: A Benchmark for Candidate Item Matching](./candidate_matching)

## Contributing
We welcome any contribution that could help improve the BARS benchmark. Check the [start guide on how to contribute](https://github.com/openbenchmark/BARS/blob/master/CONTRIBUTING.md).

We welcome any contribution that could help improve the BARS benchmark. Check the [start guide on how to contribute](https://github.com/openbenchmark/BARS/blob/master/CONTRIBUTING.md).

## Discussion

If you have any questions or feedback about the BARS benchamrk, please [start a discussion here](https://github.com/openbenchmark/BARS/discussions/new), or join our [WeChat group](https://gitee.com/xpai/Images/raw/master/1637915312191.jpg).

![Scan WeChat QR](./images/wechat.jpg)

14 changes: 7 additions & 7 deletions candidate_matching/README.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
# BARS-Matching Benchmark
# BarsMatch Benchmark

Open Benchmarking for Candidate Item Matching https://openbenchmark.github.io/candidate-matching
BarsMatch: A Benchmark for Candidate Matching https://openbenchmark.github.io/candidate-matching

The repo contains four parts:

+ [Paper List](./papers.json)
+ [Dataset Splits](./datasets)
+ [Benchmark Models](./benchmarks)
+ [Benchmark Results](./leaderboard)
+ [Paper List of Candidate Matching](./papers.json)
+ [Benchmark Datasets](./datasets)
+ [Benchmark Settings](./benchmarks)
+ [Benchmark Leaderboards](./leaderboard)

## Contributing
We welcome any contribution to help improve the benchmark. Check the [guide on how to contribute](https://github.com/xue-pai/Open-Match-Benchmark/blob/master/CONTRIBUTING.md).

We welcome any contribution to help improve the benchmark. Check the [guide on how to contribute](https://github.com/xue-pai/Open-Match-Benchmark/blob/master/CONTRIBUTING.md).
13 changes: 7 additions & 6 deletions ctr_prediction/README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
# BARS-CTR Benchmark
# BarsCTR Benchmark

Open Benchmarking for CTR Prediction https://openbenchmark.github.io/ctr-prediction
BarsCTR: A Benchmark for CTR Prediction https://openbenchmark.github.io/ctr-prediction

The repo contains four parts:

+ [Paper List](./papers.json)
+ [Dataset Splits](./datasets)
+ [Benchmark Models](./benchmarks)
+ [Benchmark Results](./leaderboard)
+ [Paper List of CTR Prediction](./papers.json)
+ [Benchmark Datasets](./datasets)
+ [Benchmark Settings](./benchmarks)
+ [Benchmark Leaderboards](./leaderboard)


Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
20220126-192306,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_002_4a58edb9 --gpu 1,[exp_id] AFM_avazu_x1_002_4a58edb9,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.738503 - logloss: 0.401095,[test] AUC: 0.757359 - logloss: 0.370485
20220126-194525,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_008_18a26b69 --gpu 3,[exp_id] AFM_avazu_x1_008_18a26b69,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.738329 - logloss: 0.401989,[test] AUC: 0.756950 - logloss: 0.371083
20220126-194519,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_004_9556c70e --gpu 3,[exp_id] AFM_avazu_x1_004_9556c70e,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.738392 - logloss: 0.401394,[test] AUC: 0.756554 - logloss: 0.371064
20220126-193728,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_003_13adef36 --gpu 2,[exp_id] AFM_avazu_x1_003_13adef36,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.739158 - logloss: 0.400023,[test] AUC: 0.756514 - logloss: 0.371021
20220126-191609,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_006_1569fc76 --gpu 1,[exp_id] AFM_avazu_x1_006_1569fc76,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.737004 - logloss: 0.401815,[test] AUC: 0.756193 - logloss: 0.371003
20220126-192213,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_005_2c338e74 --gpu 0,[exp_id] AFM_avazu_x1_005_2c338e74,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.738300 - logloss: 0.401358,[test] AUC: 0.756059 - logloss: 0.371229
20220126-193039,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_007_014385a7 --gpu 2,[exp_id] AFM_avazu_x1_007_014385a7,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.737730 - logloss: 0.401879,[test] AUC: 0.755318 - logloss: 0.371964
20220126-190109,[command] python run_expid.py --version pytorch --config Avazu/AFM_avazu_x1/AFM_avazu_x1_tuner_config_03 --expid AFM_avazu_x1_001_73860ac7 --gpu 0,[exp_id] AFM_avazu_x1_001_73860ac7,[dataset_id] avazu_x1_3fb65689,[train] N.A.,[val] AUC: 0.737708 - logloss: 0.401403,[test] AUC: 0.754699 - logloss: 0.371728
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
20220127-152904,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_004_954c0ecc --gpu 3,[exp_id] AFM_criteo_x1_004_954c0ecc,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.804069 - logloss: 0.447414,[test] AUC: 0.804436 - logloss: 0.446977
20220127-152129,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_005_d8ea9c7d --gpu 4,[exp_id] AFM_criteo_x1_005_d8ea9c7d,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.803815 - logloss: 0.447517,[test] AUC: 0.804089 - logloss: 0.447154
20220127-144735,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_008_6df419fc --gpu 7,[exp_id] AFM_criteo_x1_008_6df419fc,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.803721 - logloss: 0.447630,[test] AUC: 0.804026 - logloss: 0.447262
20220127-141400,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_007_4138fd26 --gpu 6,[exp_id] AFM_criteo_x1_007_4138fd26,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.803214 - logloss: 0.448275,[test] AUC: 0.803638 - logloss: 0.447759
20220127-231218,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_009_c044ff29 --gpu 0,[exp_id] AFM_criteo_x1_009_c044ff29,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.802828 - logloss: 0.448389,[test] AUC: 0.803153 - logloss: 0.447985
20220127-160557,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_006_089b8bc5 --gpu 5,[exp_id] AFM_criteo_x1_006_089b8bc5,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.802620 - logloss: 0.448513,[test] AUC: 0.802938 - logloss: 0.448099
20220128-004229,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_001_710faa0a --gpu 0,[exp_id] AFM_criteo_x1_001_710faa0a,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.802390 - logloss: 0.448821,[test] AUC: 0.802615 - logloss: 0.448479
20220127-173323,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_002_8ec85047 --gpu 1,[exp_id] AFM_criteo_x1_002_8ec85047,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.801091 - logloss: 0.449804,[test] AUC: 0.801306 - logloss: 0.449471
20220127-174824,[command] python run_expid.py --version pytorch --config Criteo/AFM_criteo_x1/AFM_criteo_x1_tuner_config_02 --expid AFM_criteo_x1_003_53db00dc --gpu 2,[exp_id] AFM_criteo_x1_003_53db00dc,[dataset_id] criteo_x1_7b681156,[train] N.A.,[val] AUC: 0.799616 - logloss: 0.451056,[test] AUC: 0.799837 - logloss: 0.450732
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
20220126-214533,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_011_2d591f68 --gpu 0,[exp_id] AFM_frappe_x1_011_2d591f68,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.971434 - logloss: 0.218243,[test] AUC: 0.969733 - logloss: 0.226424
20220126-214539,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_012_242dd9fd --gpu 0,[exp_id] AFM_frappe_x1_012_242dd9fd,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.969669 - logloss: 0.212333,[test] AUC: 0.967725 - logloss: 0.223535
20220126-214457,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_010_d58884d3 --gpu 1,[exp_id] AFM_frappe_x1_010_d58884d3,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.967273 - logloss: 0.232043,[test] AUC: 0.966885 - logloss: 0.232084
20220126-215042,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_017_a771093b --gpu 0,[exp_id] AFM_frappe_x1_017_a771093b,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.963643 - logloss: 0.219164,[test] AUC: 0.962184 - logloss: 0.225581
20220126-213927,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_005_32d99fe9 --gpu 0,[exp_id] AFM_frappe_x1_005_32d99fe9,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.962525 - logloss: 0.234119,[test] AUC: 0.961885 - logloss: 0.235727
20220126-214236,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_008_35889f27 --gpu 0,[exp_id] AFM_frappe_x1_008_35889f27,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.962589 - logloss: 0.230594,[test] AUC: 0.961529 - logloss: 0.234464
20220126-214040,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_001_a874e8ba --gpu 0,[exp_id] AFM_frappe_x1_001_a874e8ba,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.962155 - logloss: 0.238215,[test] AUC: 0.961165 - logloss: 0.242596
20220126-215122,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_018_c86fc45c --gpu 0,[exp_id] AFM_frappe_x1_018_c86fc45c,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.962642 - logloss: 0.227133,[test] AUC: 0.960748 - logloss: 0.232967
20220126-215025,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_014_9895c7ee --gpu 0,[exp_id] AFM_frappe_x1_014_9895c7ee,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.962579 - logloss: 0.232125,[test] AUC: 0.960552 - logloss: 0.238697
20220126-214416,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_009_19945476 --gpu 1,[exp_id] AFM_frappe_x1_009_19945476,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.961751 - logloss: 0.232026,[test] AUC: 0.959939 - logloss: 0.237911
20220126-215006,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_015_ae17c0a8 --gpu 1,[exp_id] AFM_frappe_x1_015_ae17c0a8,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.959339 - logloss: 0.241750,[test] AUC: 0.957667 - logloss: 0.246371
20220126-214812,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_013_5671dff3 --gpu 1,[exp_id] AFM_frappe_x1_013_5671dff3,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.959136 - logloss: 0.239104,[test] AUC: 0.956986 - logloss: 0.247043
20220126-214911,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_016_26a3b9ce --gpu 1,[exp_id] AFM_frappe_x1_016_26a3b9ce,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.957464 - logloss: 0.241843,[test] AUC: 0.956351 - logloss: 0.244413
20220126-213854,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_002_17267821 --gpu 1,[exp_id] AFM_frappe_x1_002_17267821,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.957650 - logloss: 0.247867,[test] AUC: 0.956021 - logloss: 0.251908
20220126-213927,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_007_5105e46b --gpu 1,[exp_id] AFM_frappe_x1_007_5105e46b,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.957627 - logloss: 0.239914,[test] AUC: 0.955993 - logloss: 0.243861
20220126-213606,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_004_70fd3ee1 --gpu 1,[exp_id] AFM_frappe_x1_004_70fd3ee1,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.950848 - logloss: 0.257810,[test] AUC: 0.949729 - logloss: 0.260169
20220126-213734,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_003_d58825c0 --gpu 0,[exp_id] AFM_frappe_x1_003_d58825c0,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.948334 - logloss: 0.264631,[test] AUC: 0.947404 - logloss: 0.266915
20220126-214103,[command] python run_expid.py --version pytorch --config Frappe/AFM_frappe_x1/AFM_frappe_x1_tuner_config_02 --expid AFM_frappe_x1_006_29f71b8f --gpu 1,[exp_id] AFM_frappe_x1_006_29f71b8f,[dataset_id] frappe_x1_04e961e9,[train] N.A.,[val] AUC: 0.946413 - logloss: 0.268847,[test] AUC: 0.945738 - logloss: 0.270422
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
20220128-121755,[command] python run_expid.py --version pytorch --config Movielens/AFM_movielenslatest_x1/AFM_movielenslatest_x1_tuner_config_04 --expid AFM_movielenslatest_x1_002_76325415 --gpu 1,[exp_id] AFM_movielenslatest_x1_002_76325415,[dataset_id] movielenslatest_x1_cd32d937,[train] N.A.,[val] AUC: 0.947478 - logloss: 0.265064,[test] AUC: 0.947193 - logloss: 0.265332
20220128-121731,[command] python run_expid.py --version pytorch --config Movielens/AFM_movielenslatest_x1/AFM_movielenslatest_x1_tuner_config_04 --expid AFM_movielenslatest_x1_001_256a62c3 --gpu 0,[exp_id] AFM_movielenslatest_x1_001_256a62c3,[dataset_id] movielenslatest_x1_cd32d937,[train] N.A.,[val] AUC: 0.947218 - logloss: 0.265006,[test] AUC: 0.947040 - logloss: 0.264900
20220128-121850,[command] python run_expid.py --version pytorch --config Movielens/AFM_movielenslatest_x1/AFM_movielenslatest_x1_tuner_config_04 --expid AFM_movielenslatest_x1_004_7d0f0534 --gpu 1,[exp_id] AFM_movielenslatest_x1_004_7d0f0534,[dataset_id] movielenslatest_x1_cd32d937,[train] N.A.,[val] AUC: 0.945872 - logloss: 0.268186,[test] AUC: 0.945811 - logloss: 0.267917
20220128-121725,[command] python run_expid.py --version pytorch --config Movielens/AFM_movielenslatest_x1/AFM_movielenslatest_x1_tuner_config_04 --expid AFM_movielenslatest_x1_003_fffe0eb5 --gpu 0,[exp_id] AFM_movielenslatest_x1_003_fffe0eb5,[dataset_id] movielenslatest_x1_cd32d937,[train] N.A.,[val] AUC: 0.944607 - logloss: 0.273424,[test] AUC: 0.944349 - logloss: 0.273750
Loading

0 comments on commit 86dabe8

Please sign in to comment.