Skip to content

red-fox-yj/Test_TP-PP

Repository files navigation

DP-PP-SP

任务描述

GLUE/QQP(Quora Question Pairs)

  • 任务类型:二分类
  • 数据集来源:Quora 平台的问答对。
  • 示例:
Question1: "How do I improve my programming skills?"
Question2: "What can I do to become better at programming?"
Label: 1 (重复问题)

模型架构

BERT Encoder ↓ [CLS] Token Embedding ↓ Classification Head (Linear Layer) ↓ Logits (size = num_labels)

实验结果

总体结果

Experiment Total Training Time (s) Throughput (samples/s) Max GPU Memory (GB)
No TP/PP 209.71 238.43 3.50
TP Only 210.43 237.61 5.13
PP Only 211.26 236.67 5.13
TP and PP 210.11 237.97 5.13

详细结果

No TP/PP

Epoch Training Loss Validation Loss Validation Accuracy Epoch Time (s)
1 0.6139 0.5376 0.69 42.26
2 0.3779 0.4132 0.805 41.97
3 0.2235 0.4199 0.826 41.64
4 0.0888 0.5952 0.822 41.97
5 0.0527 0.6221 0.812 41.85

TP Only

Epoch Training Loss Validation Loss Validation Accuracy Epoch Time (s)
1 0.0755 0.6338 0.823 42.20
2 0.0125 0.7925 0.824 41.87
3 0.0058 1.0041 0.81 41.96
4 0.0051 0.9641 0.819 42.26
5 0.0151 0.8852 0.8 42.15

PP Only

Epoch Training Loss Validation Loss Validation Accuracy Epoch Time (s)
1 0.0495 0.8433 0.811 42.22
2 0.0025 1.0821 0.807 42.29
3 0.0025 1.0177 0.818 42.50
4 0.0016 1.0367 0.819 42.36
5 0.0112 0.8813 0.819 41.89

TP and PP

Epoch Training Loss Validation Loss Validation Accuracy Epoch Time (s)
1 0.0265 0.9646 0.809 42.06
2 0.0008 1.1380 0.825 42.01
3 0.0009 1.0919 0.825 41.93
4 0.0002 1.1479 0.829 42.10
5 0.0002 1.1961 0.827 42.01

training_loss_vs_epochs validation_loss_vs_epochs validation_accuracy_vs_epochs

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages