Skip to content

ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings - NeurIPS 2023 (oral)

Notifications You must be signed in to change notification settings

red-fox-yj/ToolkenGPT

 
 

Repository files navigation

ToolkenGPT

Source code for ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings

NeurIPS 2023 (oral) | Best Paper Award at SoCalNLP 2023

Figure

Preparation

  • Our experiments are conducted with LLaMA-13B/33B, which takes at least 2/4 GPUs of 24GB memory each.
  • Acquire the checkpoints of LLaMA from MetaAI and install all required packages. Please refer to LLaMA official repo.
  • Download the data from here (all datasets uploaded)
  • (For VirtualHome) Please download the data following the instructions here.

    A side note: the folder virtualhome is from its official repo, but we fixed some small bugs in the evolving graph.

GSM8K-XL LLaMA-33B

Train

CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.run --nproc_per_node 2 --master_port 1200 train_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --input_file data/gsm8k-xl/train.json --lr 1e-3 --num_epochs 10

Inference

CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.run --nproc_per_node 2 --master_port 1250 inference_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --mode func_embedding --dataset gsm8k-xl  --func_load_path checkpoints/gsm8k-xl/epoch_9.pth --logits_bias 3.0

FuncQA LLaMA-30B

Train

CUDA_VISIBLE_DEVICES=0,5,6,7 python -m torch.distributed.run --nproc_per_node 4 --master_port 1200 train_llama.py --ckpt_dir /remote-home/share/models/llama/30B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --dataset funcqa --input_file data/funcqa/train.json --lr 1e-4 --num_epochs 10

Inference (1-hop)

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node 4 --master_port 1250 inference_llama.py --ckpt_dir /remote-home/share/models/llama/30B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --mode func_embedding --dataset funcqa_oh --func_load_path checkpoints/funcqa/epoch_7.pth --logits_bias 2.7

Inference (MultiHop)

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node 4 --master_port 1250 inference_llama.py --ckpt_dir /remote-home/share/models/llama/30B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --mode func_embedding --dataset funcqa_mh --func_load_path checkpoints/funcqa/epoch_7.pth --logits_bias 4.0

VirtualHome VirtualHome

Training

CUDA_VISIBLE_DEVICES=6,7 python -m torch.distributed.run --nproc_per_node 2 --master_port 3001 train_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --dataset vh --input_file data/vh/legal_train_v4_embedding.json --only_functoken True --num_epochs 10

Inference

CUDA_VISIBLE_DEVICES=3,5 python -m torch.distributed.run --nproc_per_node 2 inference_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --mode vh_embedding_inference --dataset vh --func_load_path checkpoints/vh/epoch_7.pth --logits_bias 10.0

Evaluation

See evaluation/eval_vh.ipynb

KAMEL LLaMA-13B

Train

  • synthetic data
CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.run --nproc_per_node 2 --master_port 3002 train_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --dataset kamel --input_file data/kamel/train_clean.json --only_functoken False  ---log_prefix synthetic-data- --num_epochs 10
  • supervised data
CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.run --nproc_per_node 2 --master_port 3002 train_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --dataset kamel --input_file data/kamel/kamel_id_train.json --only_functoken False ---log_prefix supervised-data- --num_epochs 10

Inference

CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.run --nproc_per_node 2 inference_llama.py --ckpt_dir /remote-home/share/models/llama/13B --tokenizer_path /remote-home/share/models/llama/tokenizer.model --mode kamel_embedding_inference --dataset kamel_30 --func_load_path checkpoints/kamel/epoch_4.pth --logits_bias 10

Evaluation

See evaluation/eval_kamel.ipynb

Vscode debug

add lanuch.json

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Run inference_llama.py",
            "type": "debugpy", 
            "request": "launch",
            "module": "torch.distributed.run",  // 直接指定模块
            "console": "integratedTerminal",
            "cwd": "/remote-home/jyang/ToolkenGPT",
            "env": {
                "CUDA_VISIBLE_DEVICES": "2,3"
            },
            "args": [
                "--nproc_per_node", "2",
                "--master_port", "1250",
                "inference_llama.py",  // 指定要运行的脚本
                "--ckpt_dir", "/remote-home/share/models/llama/13B",
                "--tokenizer_path", "/remote-home/share/models/llama/tokenizer.model",
                "--mode", "func_embedding",
                "--dataset", "gsm8k-xl",
                "--func_load_path", "checkpoints/gsm8k-xl/epoch_9.pth",
                "--logits_bias", "3.0"
            ],
            "python": "/remote-home/jyang/miniconda3/envs/ToolkenGPT/bin/python",  // 确保这是你使用的Python解释器
            "subProcess": true,
            "justMyCode": true
        }
    ]
}

About

ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings - NeurIPS 2023 (oral)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.1%
  • Jupyter Notebook 29.8%
  • Shell 0.1%