PyTorch implementation of our ICCV 2019 paper:
Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis
Please clone the newest codes.
[paper] [website] [Supplemental Material] [Dataset]
-
10/05/2019, optimize the minimal requirements of GPU memory (at least
3.8GB
available). -
10/24/2019, Imper-1.2.2, add the training document train.md.
Python 3.6+, Pytorch 1.2, torchvision 0.4, cuda10.0, at least 3.8GB
GPU memory and other requirements.
All codes are tested on Linux Distributions (Ubutun 16.04 is recommended), and other platforms have not been tested yet.
pip install -r requirements.txt
apt-get install ffmpeg
cd thirdparty/neural_renderer
python setup.py install
- Download
pretrains.zip
from OneDrive or BaiduPan and then move the pretrains.zip to theassets
directory and unzip this file.
wget -O assets/pretrains.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNw4QyntCMsDKQjSg?e=L77Elv
- Download
checkpoints.zip
from OneDrive or BaiduPan and then unzip thecheckpoints.zip
and move them tooutputs
directory.
wget -O outputs/checkpoints.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNyoEh67Uu0LlxquA?e=dkOnhQ
- Download
samples.zip
from OneDrive or BaiduPan, and then unzip thesamples.zip
and move them toassets
directory.
wget -O assets/samples.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNz4BqnSgqrVwAXoQ?e=bC86db
If you want to get the results of the demo shown on the webpage, you can run the following scripts.
The results are saved in ./outputs/results/demos
-
Demo of Motion Imitation
python demo_imitator.py --gpu_ids 1
-
Demo of Appearance Transfer
python demo_swap.py --gpu_ids 1
-
Demo of Novel View Synthesis
python demo_view.py --gpu_ids 1
If you get the errors like RuntimeError: CUDA out of memory
, please add the flag --batch_size 1
, the minimal
GPU memory is 3.8 GB.
If you want to test other inputs (source image and reference images from yourself), here are some examples.
Please replace the --ip YOUR_IP
and --port YOUR_PORT
for
Visdom visualization.
-
Motion Imitation
- source image from iPER dataset
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \ --src_path ./assets/src_imgs/imper_A_Pose/009_5_1_000.jpg \ --tgt_path ./assets/samples/refs/iPER/024_8_2 \ --bg_ks 13 --ft_ks 3 \ --has_detector --post_tune \ --save_res --ip YOUR_IP --port YOUR_PORT
- source image from DeepFashion dataset
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \ --src_path ./assets/src_imgs/fashion_woman/Sweaters-id_0000088807_4_full.jpg \ --tgt_path ./assets/samples/refs/iPER/024_8_2 \ --bg_ks 25 --ft_ks 3 \ --has_detector --post_tune \ --save_res --ip YOUR_IP --port YOUR_PORT
- source image from Internet
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \ --src_path ./assets/src_imgs/internet/men1_256.jpg \ --tgt_path ./assets/samples/refs/iPER/024_8_2 \ --bg_ks 7 --ft_ks 3 \ --has_detector --post_tune --front_warp \ --save_res --ip YOUR_IP --port YOUR_PORT
-
Appearance Transfer
An example that source image from iPER and reference image from DeepFashion dataset.
python run_swap.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \ --src_path ./assets/src_imgs/imper_A_Pose/024_8_2_0000.jpg \ --tgt_path ./assets/src_imgs/fashion_man/Sweatshirts_Hoodies-id_0000680701_4_full.jpg \ --bg_ks 13 --ft_ks 3 \ --has_detector --post_tune --front_warp --swap_part body \ --save_res --ip http://10.10.10.100 --port 31102
-
Novel View Synthesis
python run_view.py --gpu_ids 0 --model viewer --output_dir ./outputs/results/ \ --src_path ./assets/src_imgs/internet/men1_256.jpg \ --bg_ks 13 --ft_ks 3 \ --has_detector --post_tune --front_warp --bg_replace \ --save_res --ip http://10.10.10.100 --port 31102
If you get the errors like RuntimeError: CUDA out of memory
, please add the flag --batch_size 1
, the minimal
GPU memory is 3.8 GB.
The details of each running scripts are shown in runDetails.md.
- The details of training iPER dataset from scratch are shown in train.md.
In our paper, the results of LPIPS reported in Table 1, are calculated by 1 – distance score; thereby, the larger is more similar between two images. The beginning intention of using 1 – distance score is that it is more accurate to meet the definition of Similarity in LPIPS.
However, most other papers use the original definition that LPIPS = distance score; therefore, to eliminate the ambiguity and make it consistent with others, we update the results in Table 1 with the original definition in the latest paper.
@InProceedings{lwb2019,
title={Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis},
author={Wen Liu and Zhixin Piao, Min Jie, Wenhan Luo, Lin Ma and Shenghua Gao},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}