forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[LoRA] Enabling limited LoRA support for text encoder (huggingface#2918)
* add: first draft for a better LoRA enabler. * make fix-copies. * feat: backward compatibility. * add: entry to the docs. * add: tests. * fix: docs. * fix: norm group test for UNet3D. * feat: add support for flat dicts. * add depcrcation message instead of warning.
- Loading branch information
Showing
6 changed files
with
682 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
import tempfile | ||
import unittest | ||
|
||
import torch | ||
import torch.nn as nn | ||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | ||
|
||
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel | ||
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin | ||
from diffusers.models.attention_processor import LoRAAttnProcessor | ||
from diffusers.utils import TEXT_ENCODER_TARGET_MODULES, floats_tensor, torch_device | ||
|
||
|
||
def create_unet_lora_layers(unet: nn.Module): | ||
lora_attn_procs = {} | ||
for name in unet.attn_processors.keys(): | ||
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | ||
if name.startswith("mid_block"): | ||
hidden_size = unet.config.block_out_channels[-1] | ||
elif name.startswith("up_blocks"): | ||
block_id = int(name[len("up_blocks.")]) | ||
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | ||
elif name.startswith("down_blocks"): | ||
block_id = int(name[len("down_blocks.")]) | ||
hidden_size = unet.config.block_out_channels[block_id] | ||
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) | ||
unet_lora_layers = AttnProcsLayers(lora_attn_procs) | ||
return lora_attn_procs, unet_lora_layers | ||
|
||
|
||
def create_text_encoder_lora_layers(text_encoder: nn.Module): | ||
text_lora_attn_procs = {} | ||
for name, module in text_encoder.named_modules(): | ||
if any([x in name for x in TEXT_ENCODER_TARGET_MODULES]): | ||
text_lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=module.out_features, cross_attention_dim=None) | ||
text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs) | ||
return text_encoder_lora_layers | ||
|
||
|
||
class LoraLoaderMixinTests(unittest.TestCase): | ||
def get_dummy_components(self): | ||
torch.manual_seed(0) | ||
unet = UNet2DConditionModel( | ||
block_out_channels=(32, 64), | ||
layers_per_block=2, | ||
sample_size=32, | ||
in_channels=4, | ||
out_channels=4, | ||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
cross_attention_dim=32, | ||
) | ||
scheduler = DDIMScheduler( | ||
beta_start=0.00085, | ||
beta_end=0.012, | ||
beta_schedule="scaled_linear", | ||
clip_sample=False, | ||
set_alpha_to_one=False, | ||
) | ||
torch.manual_seed(0) | ||
vae = AutoencoderKL( | ||
block_out_channels=[32, 64], | ||
in_channels=3, | ||
out_channels=3, | ||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | ||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | ||
latent_channels=4, | ||
) | ||
text_encoder_config = CLIPTextConfig( | ||
bos_token_id=0, | ||
eos_token_id=2, | ||
hidden_size=32, | ||
intermediate_size=37, | ||
layer_norm_eps=1e-05, | ||
num_attention_heads=4, | ||
num_hidden_layers=5, | ||
pad_token_id=1, | ||
vocab_size=1000, | ||
) | ||
text_encoder = CLIPTextModel(text_encoder_config) | ||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | ||
|
||
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet) | ||
text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder) | ||
|
||
pipeline_components = { | ||
"unet": unet, | ||
"scheduler": scheduler, | ||
"vae": vae, | ||
"text_encoder": text_encoder, | ||
"tokenizer": tokenizer, | ||
"safety_checker": None, | ||
"feature_extractor": None, | ||
} | ||
lora_components = { | ||
"unet_lora_layers": unet_lora_layers, | ||
"text_encoder_lora_layers": text_encoder_lora_layers, | ||
"unet_lora_attn_procs": unet_lora_attn_procs, | ||
} | ||
return pipeline_components, lora_components | ||
|
||
def get_dummy_inputs(self): | ||
batch_size = 1 | ||
sequence_length = 10 | ||
num_channels = 4 | ||
sizes = (32, 32) | ||
|
||
generator = torch.manual_seed(0) | ||
noise = floats_tensor((batch_size, num_channels) + sizes) | ||
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | ||
|
||
pipeline_inputs = { | ||
"prompt": "A painting of a squirrel eating a burger", | ||
"generator": generator, | ||
"num_inference_steps": 2, | ||
"guidance_scale": 6.0, | ||
"output_type": "numpy", | ||
} | ||
|
||
return noise, input_ids, pipeline_inputs | ||
|
||
def test_lora_save_load(self): | ||
pipeline_components, lora_components = self.get_dummy_components() | ||
sd_pipe = StableDiffusionPipeline(**pipeline_components) | ||
sd_pipe = sd_pipe.to(torch_device) | ||
sd_pipe.set_progress_bar_config(disable=None) | ||
|
||
noise, input_ids, pipeline_inputs = self.get_dummy_inputs() | ||
|
||
original_images = sd_pipe(**pipeline_inputs).images | ||
orig_image_slice = original_images[0, -3:, -3:, -1] | ||
|
||
with tempfile.TemporaryDirectory() as tmpdirname: | ||
LoraLoaderMixin.save_lora_weights( | ||
save_directory=tmpdirname, | ||
unet_lora_layers=lora_components["unet_lora_layers"], | ||
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | ||
) | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | ||
sd_pipe.load_lora_weights(tmpdirname) | ||
|
||
lora_images = sd_pipe(**pipeline_inputs).images | ||
lora_image_slice = lora_images[0, -3:, -3:, -1] | ||
|
||
# Outputs shouldn't match. | ||
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | ||
|
||
def test_lora_save_load_safetensors(self): | ||
pipeline_components, lora_components = self.get_dummy_components() | ||
sd_pipe = StableDiffusionPipeline(**pipeline_components) | ||
sd_pipe = sd_pipe.to(torch_device) | ||
sd_pipe.set_progress_bar_config(disable=None) | ||
|
||
noise, input_ids, pipeline_inputs = self.get_dummy_inputs() | ||
|
||
original_images = sd_pipe(**pipeline_inputs).images | ||
orig_image_slice = original_images[0, -3:, -3:, -1] | ||
|
||
with tempfile.TemporaryDirectory() as tmpdirname: | ||
LoraLoaderMixin.save_lora_weights( | ||
save_directory=tmpdirname, | ||
unet_lora_layers=lora_components["unet_lora_layers"], | ||
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | ||
safe_serialization=True, | ||
) | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | ||
sd_pipe.load_lora_weights(tmpdirname) | ||
|
||
lora_images = sd_pipe(**pipeline_inputs).images | ||
lora_image_slice = lora_images[0, -3:, -3:, -1] | ||
|
||
# Outputs shouldn't match. | ||
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | ||
|
||
def test_lora_save_load_legacy(self): | ||
pipeline_components, lora_components = self.get_dummy_components() | ||
unet_lora_attn_procs = lora_components["unet_lora_attn_procs"] | ||
sd_pipe = StableDiffusionPipeline(**pipeline_components) | ||
sd_pipe = sd_pipe.to(torch_device) | ||
sd_pipe.set_progress_bar_config(disable=None) | ||
|
||
noise, input_ids, pipeline_inputs = self.get_dummy_inputs() | ||
|
||
original_images = sd_pipe(**pipeline_inputs).images | ||
orig_image_slice = original_images[0, -3:, -3:, -1] | ||
|
||
with tempfile.TemporaryDirectory() as tmpdirname: | ||
unet = sd_pipe.unet | ||
unet.set_attn_processor(unet_lora_attn_procs) | ||
unet.save_attn_procs(tmpdirname) | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | ||
sd_pipe.load_lora_weights(tmpdirname) | ||
|
||
lora_images = sd_pipe(**pipeline_inputs).images | ||
lora_image_slice = lora_images[0, -3:, -3:, -1] | ||
|
||
# Outputs shouldn't match. | ||
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) |