forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MRG] More general solvers for `
ot.solve
and examples of different v…
…ariants. (PythonOT#620) * add exaple and allow for functional regularizers * fix test since ow all is implemented * manuel regularizer available for exact and unbalanecd ot * exmaple with banaced manuel regularizer * upate documenation * pep8 * clenaup envelope instedaof implicit * big release file update
- Loading branch information
Showing
6 changed files
with
260 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
====================================== | ||
Optimal Transport solvers comparison | ||
====================================== | ||
This example illustrates the solutions returns for diffrent variants of exact, | ||
regularized and unbalanced OT solvers. | ||
""" | ||
|
||
# Author: Remi Flamary <[email protected]> | ||
# | ||
# License: MIT License | ||
# sphinx_gallery_thumbnail_number = 3 | ||
|
||
#%% | ||
|
||
import numpy as np | ||
import matplotlib.pylab as pl | ||
import ot | ||
import ot.plot | ||
from ot.datasets import make_1D_gauss as gauss | ||
|
||
############################################################################## | ||
# Generate data | ||
# ------------- | ||
|
||
|
||
#%% parameters | ||
|
||
n = 50 # nb bins | ||
|
||
# bin positions | ||
x = np.arange(n, dtype=np.float64) | ||
|
||
# Gaussian distributions | ||
a = 0.6 * gauss(n, m=15, s=5) + 0.4 * gauss(n, m=35, s=5) # m= mean, s= std | ||
b = gauss(n, m=25, s=5) | ||
|
||
# loss matrix | ||
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1))) | ||
M /= M.max() | ||
|
||
|
||
############################################################################## | ||
# Plot distributions and loss matrix | ||
# ---------------------------------- | ||
|
||
#%% plot the distributions | ||
|
||
pl.figure(1, figsize=(6.4, 3)) | ||
pl.plot(x, a, 'b', label='Source distribution') | ||
pl.plot(x, b, 'r', label='Target distribution') | ||
pl.legend() | ||
|
||
#%% plot distributions and loss matrix | ||
|
||
pl.figure(2, figsize=(5, 5)) | ||
ot.plot.plot1D_mat(a, b, M, 'Cost matrix M') | ||
|
||
############################################################################## | ||
# Define Group lasso regularization and gradient | ||
# ------------------------------------------------ | ||
# The groups are the first and second half of the columns of G | ||
|
||
|
||
def reg_gl(G): # group lasso + small l2 reg | ||
G1 = G[:n // 2, :]**2 | ||
G2 = G[n // 2:, :]**2 | ||
gl1 = np.sum(np.sqrt(np.sum(G1, 0))) | ||
gl2 = np.sum(np.sqrt(np.sum(G2, 0))) | ||
return gl1 + gl2 + 0.1 * np.sum(G**2) | ||
|
||
|
||
def grad_gl(G): # gradient of group lasso + small l2 reg | ||
G1 = G[:n // 2, :] | ||
G2 = G[n // 2:, :] | ||
gl1 = G1 / np.sqrt(np.sum(G1**2, 0, keepdims=True) + 1e-8) | ||
gl2 = G2 / np.sqrt(np.sum(G2**2, 0, keepdims=True) + 1e-8) | ||
return np.concatenate((gl1, gl2), axis=0) + 0.2 * G | ||
|
||
|
||
reg_type_gl = (reg_gl, grad_gl) | ||
|
||
# %% | ||
# Set up parameters for solvers and solve | ||
# --------------------------------------- | ||
|
||
lst_regs = ["No Reg.", "Entropic", "L2", "Group Lasso + L2"] | ||
lst_unbalanced = ["Balanced", "Unbalanced KL", 'Unbalanced L2', 'Unb. TV (Partial)'] # ["Balanced", "Unb. KL", "Unb. L2", "Unb L1 (partial)"] | ||
|
||
lst_solvers = [ # name, param for ot.solve function | ||
# balanced OT | ||
('Exact OT', dict()), | ||
('Entropic Reg. OT', dict(reg=0.005)), | ||
('L2 Reg OT', dict(reg=1, reg_type='l2')), | ||
('Group Lasso Reg. OT', dict(reg=0.1, reg_type=reg_type_gl)), | ||
|
||
|
||
# unbalanced OT KL | ||
('Unbalanced KL No Reg.', dict(unbalanced=0.005)), | ||
('Unbalanced KL wit KL Reg.', dict(reg=0.0005, unbalanced=0.005, unbalanced_type='kl', reg_type='kl')), | ||
('Unbalanced KL with L2 Reg.', dict(reg=0.5, reg_type='l2', unbalanced=0.005, unbalanced_type='kl')), | ||
('Unbalanced KL with Group Lasso Reg.', dict(reg=0.1, reg_type=reg_type_gl, unbalanced=0.05, unbalanced_type='kl')), | ||
|
||
# unbalanced OT L2 | ||
('Unbalanced L2 No Reg.', dict(unbalanced=0.5, unbalanced_type='l2')), | ||
('Unbalanced L2 with KL Reg.', dict(reg=0.001, unbalanced=0.2, unbalanced_type='l2')), | ||
('Unbalanced L2 with L2 Reg.', dict(reg=0.1, reg_type='l2', unbalanced=0.2, unbalanced_type='l2')), | ||
('Unbalanced L2 with Group Lasso Reg.', dict(reg=0.05, reg_type=reg_type_gl, unbalanced=0.7, unbalanced_type='l2')), | ||
|
||
# unbalanced OT TV | ||
('Unbalanced TV No Reg.', dict(unbalanced=0.1, unbalanced_type='tv')), | ||
('Unbalanced TV with KL Reg.', dict(reg=0.001, unbalanced=0.01, unbalanced_type='tv')), | ||
('Unbalanced TV with L2 Reg.', dict(reg=0.1, reg_type='l2', unbalanced=0.01, unbalanced_type='tv')), | ||
('Unbalanced TV with Group Lasso Reg.', dict(reg=0.02, reg_type=reg_type_gl, unbalanced=0.01, unbalanced_type='tv')), | ||
|
||
] | ||
|
||
lst_plans = [] | ||
for (name, param) in lst_solvers: | ||
G = ot.solve(M, a, b, **param).plan | ||
lst_plans.append(G) | ||
|
||
############################################################################## | ||
# Plot plans | ||
# ---------- | ||
|
||
pl.figure(3, figsize=(9, 9)) | ||
|
||
for i, bname in enumerate(lst_unbalanced): | ||
for j, rname in enumerate(lst_regs): | ||
pl.subplot(len(lst_unbalanced), len(lst_regs), i * len(lst_regs) + j + 1) | ||
|
||
plan = lst_plans[i * len(lst_regs) + j] | ||
m2 = plan.sum(0) | ||
m1 = plan.sum(1) | ||
m1, m2 = m1 / a.max(), m2 / b.max() | ||
pl.imshow(plan, cmap='Greys') | ||
pl.plot(x, m2 * 10, 'r') | ||
pl.plot(m1 * 10, x, 'b') | ||
pl.plot(x, b / b.max() * 10, 'r', alpha=0.3) | ||
pl.plot(a / a.max() * 10, x, 'b', alpha=0.3) | ||
#pl.axis('off') | ||
pl.tick_params(left=False, right=False, labelleft=False, | ||
labelbottom=False, bottom=False) | ||
if i == 0: | ||
pl.title(rname) | ||
if j == 0: | ||
pl.ylabel(bname, fontsize=14) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.