Skip to content

Commit

Permalink
add cs259D
Browse files Browse the repository at this point in the history
  • Loading branch information
ricosr committed Dec 2, 2019
1 parent 30cba16 commit d7ca16d
Show file tree
Hide file tree
Showing 12 changed files with 441 additions and 0 deletions.
214 changes: 214 additions & 0 deletions cs259D/CS259D_ Data Mining for Cyber Security - Autumn 2014.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0037)http://web.stanford.edu/class/cs259d/ -->
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>CS259D: Data Mining for Cyber Security - Autumn 2014</title>
<link href="./CS259D_ Data Mining for Cyber Security - Autumn 2014_files/styles.css" rel="stylesheet" type="text/css">
</head>
<body>

<div id="header">
<h1 id="coursetitle">

<span class="courseNumber">CS 259D</span>
<span class="courseTitle">Data Mining for Cyber Security</span>
<span class="courseSemester">Autumn 2014</span>
</h1>
<br class="clearfloat">
</div><!-- end #header -->

<div class="navbar">
<ul>
<!-- <li><a href="#announcements">Announcements</a></li> -->
<li><a href="http://web.stanford.edu/class/cs259d/#info">Course information</a></li>
<li><a href="http://web.stanford.edu/class/cs259d/#lectures">Lectures</a></li>
<li><a href="http://web.stanford.edu/class/cs259d/#hw">Homework</a></li>
<li><a href="http://web.stanford.edu/class/cs259d/#readings">Readings</a></li>
<li><a href="http://web.stanford.edu/class/cs259d/#topics">Topics</a></li>
<li><a href="http://web.stanford.edu/class/cs259d/#reqs">Requirements</a></li>

</ul>
</div>


<!-- ====================================================================== -->

<!-- <h2><a name="announcements" id="announcements">Announcements</a></h2> -->


<!-- ====================================================================== -->

<h2><a name="info">Course information</a></h2>

<table class="courseinfo">
<tbody><tr class="oddRow">
<th scope="row">
Time
</th>
<td>
TTh 4:15pm - 5:30pm
</td>
</tr>
<tr class="evenRow">
<th scope="row">
Location
</th>
<td>
<!-- <span class="tbd">TBD</span> -->
<a href="http://campus-map.stanford.edu/?id=07-410&amp;lat=37.4296917188&amp;lng=-122.171585208&amp;zoom=17&amp;srch=Herrin%20Biology%20Hall">Herrin T175</a> (click for map)
</td>
</tr>
<tr class="oddRow">
<th scope="row">
Staff
</th>
<td>
<table class="staff">
<tbody><tr>
<th scope="row">Instructor</th>
<td>Bahman Bahmani</td>
<td>
bahman@cs
</td>
<td>Office Hours: 5:45 - 6:45pm outside the classroom</td>
</tr>
<tr><th scope="row">TA</th>
<td>Dima Brezhnev</td>
<td>
brezhnev@cs
</td>
<td>Office Hours: 1:00 - 3:00pm Fridays @ Huang open area on bottom floor outside of ICME + extra office hours before assignment due dates</td>
</tr>


</tbody></table>
</td>
</tr>


<tr class="evenRow">
<th scope="row">
Piazza
</th>
<td>
<a href="http://www.piazza.com/stanford/autumn2014/cs259d">Link</a>
</td>
</tr>
</tbody></table>

<!-- Homeworks require access to the linguistic data on AFS. <a href="klog.html">Instructions to get access. -->


<p><strong style="padding-right: 20px;">Description</strong>
The massive increase in the rate of novel cyber attacks has made data-mining-based techniques a critical component in detecting security threats. The course covers various applications of data mining in computer and network security. Topics include: Overview of the state of information security; malware detection; network and host intrusion detection; web, email, and social network security; authentication and authorization anomaly detection; alert correlation; and potential issues such as privacy issues and adversarial machine learning. Prerequisites: Data mining / machine learning at the level of CS 246 or CS 229; familiarity with computer systems and networks at least at the level of CS 110; CS 140 and CS 144 strongly recommended; CS 155 recommended but not required.
</p>
<!-- ====================================================================== -->
<h2><a name="lectures">Lectures</a></h2>
<p>
</p><ol>
<li> <b>Introduction:</b> Overview of information security, current security landscape, the case for security data mining [<a href="http://web.stanford.edu/class/cs259d/lectures/Session1.pdf">pdf</a>]</li>
<li> <b>Botnets:</b> Botnet topologies, botnet detection using NetFlow analysis [<a href="http://web.stanford.edu/class/cs259d/lectures/Session2.pdf">pdf</a>]</li>
<li> <b>Botnets Cont'd, Insider Threats:</b> Botnet detection using DNS analysis, introduction to insider threats, masquerader detection strategies [<a href="http://web.stanford.edu/class/cs259d/lectures/Session3.pdf">pdf</a>] <br>Readings:
<ul>
<li><a href="http://web.stanford.edu/class/cs259d/readings/Insider_survey.pdf">A Survey of Insider Attack Detection Research</a> Skim before class and use the references for more information.</li>
<li><a href="http://web.stanford.edu/class/cs259d/readings/Infrastructure.pdf">Insider IT Sabotage across US Critical Infrastructure</a> Appendix B</li>
</ul>
</li>
<li> <b>Behavioral Biometrics:</b> Active authentication using behavioral and cognitive biometrics [<a href="http://web.stanford.edu/class/cs259d/lectures/Session4.pdf">pdf</a>] <br>Reading: Ch 4 + Ch 6 of "Behavioral Biometrics, A Remote Access Approach" by Kenneth Revett (2008). </li>
<li> <b>Behavioral Biometrics Cont'd:</b> Mouse dynamics analysis for active authentication [<a href="http://web.stanford.edu/class/cs259d/lectures/Session5.pdf">pdf</a>]</li>
<li> <b>Security at Wells Fargo:</b> Guest speaker Avi Avivi, VP Enterprise Information Security Architecture at Wells Fargo [<a href="http://web.stanford.edu/class/cs259d/lectures/Session6.pdf">pdf</a>]</li>
<li> <b>Behavioral Biometrics Cont'd:</b> Mouse dynamics analysis cont'd, touch and swipe pattern analysis for mobile active authentication [<a href="http://web.stanford.edu/class/cs259d/lectures/Session7.pdf">pdf</a>]</li>
<li> <b>Web Security:</b> Web threat detection via web server log analysis [<a href="http://web.stanford.edu/class/cs259d/lectures/Session8.pdf">pdf</a>]</li>
<li> <b>Security at Union Bank:</b> Guest speaker Gary Lorenz, Chief Information Security Officer (CISO) and Managing Director at MUFG Union Bank
</li><li> <b>Multi-Classifier Systems, Adversarial Machine-Learning:</b> Overview of multi-classifier systems (MCS), advantages of MCS in security analytics, security of machine learning [<a href="http://web.stanford.edu/class/cs259d/lectures/Session10.pdf">pdf</a>]</li>
<li> <b>Security Data Mining at Google:</b> Guest speaker Massimiliano Poletto, head of Google Security Monitoring Tools group [<a href="http://web.stanford.edu/class/cs259d/lectures/Session11.pdf">pdf</a>]</li>
<li> <b>Web Security Cont'd, Deep Packet Inspection:</b> Alert aggregation for web security, packet payload modeling for network intrusion detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session12.pdf">pdf</a>]</li>
<li> <b>Machine Learning for Security:</b> Challenges in applying machine learning (ML) to security, guidelines for applying ML to security [<a href="http://web.stanford.edu/class/cs259d/lectures/Session13.pdf">pdf</a>]</li>
<li> <b>Polymorphism:</b> Polymorphic blending attacks, infeasibility of modeling polymorphic attacks [<a href="http://web.stanford.edu/class/cs259d/lectures/Session14.pdf">pdf</a>]</li>
<li> <b>Deep Packet Inspection Cont'd:</b> One-class multi-classifier systems, one-class MCS for packet payload modeling and network intrusion detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session15.pdf">pdf</a>]
<br> Note to students: Please also refer to class notes for mathemtical derivations of one-class MCS fusion rules</li>
<li> <b>Phishing Detection:</b> Phishing email detection, phishing website detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session16.pdf">pdf</a>]</li>
<li> <b> Industry Perspectives:</b> Q&amp;A with guest speaker Michael Fey, EVP and CTO of Intel Security Group (aka McAfee)</li>
<li> <b> Student Presentations:</b> [<a href="http://web.stanford.edu/class/cs259d/lectures/StudentPresentations1.pdf">pdf</a>]</li>
<li> <b> Student Presentations Cont'd:</b> [<a href="http://web.stanford.edu/class/cs259d/lectures/StudentPresentations2.pdf">pdf</a>]</li>
<li> <b> Automatic Alert Correlation, Final Thoughts:</b> Building attack scenarios from individual alerts, course review, current and future trends in security [<a href="http://web.stanford.edu/class/cs259d/lectures/Session20.pdf">pdf</a>]
</li></ol>
<p></p>

<h2><a name="hw">Homework</a></h2>
<p>
First homework: <a href="http://goo.gl/w4d8Ct">Google Doc</a>. It is due on 10/21. Submission instructions will be posted closer to the due date.
</p>
<p>
Second homework: <a href="https://docs.google.com/document/d/1VF8DCRrmXTFf5-xQBFDO_IQxiUIyo7dPITG0mXZ8D7I">Google Doc</a>. It is due on 11/5 night.
</p>
<p>
Third homework: <a href="https://docs.google.com/document/d/1DOoC-SHef-Xrdx6UoA03hAezlhJJy-kwFxofVEPXyvk/edit?usp=sharing">Google Doc</a>. It is due on Friday before Thanksgiving break. Note that this assignment requires you to sign up before 10/14 for a presentation.
</p><p>
Course Review/Fourth homework: <a href="https://docs.google.com/document/d/11asTJ1tC5x4c5OIKV8wfvKOBIh37TQOtznvZ8QV1uv4/edit?usp=sharing">Google Doc</a>. Due Friday 12/12 noon. Early submissions are appreciated.
</p>
<h2><a name="readings">Recommended Readings</a></h2>
These titles are available for free online through the Stanford library resources.
<ul>
<li>Applications of Data Mining in Computer Security<br>Daniel Barbara and Sushil Jajodia</li>
<li>Machine Learning and Data Mining for Computer Security<br>Marcus A. Maloof</li>
<li>Enhancing Computer Security with Smart Technology<br>
V Rao Vemuri</li>
<li>Insider Attack and Cyber Security: Beyond the Hacker<br>S. Stolfo, S. Bellovin, S. Hershkop, A. Keromytis, S. Sinclair, S. Smith</li>
<li>Network Anomaly Detection: A Machine Learning Perspective<br>Dhruba K. Bhattacharyya, Jugal K. Kalita</li>
<li>Data Warehousing and Data Mining Techniques for Cyber Security<br>Anoop Singhal</li>
<li>Crimeware, Understanding New Attacks and Defenses<br>Markus Jakobsson and Zulfikar Ramzan</li>
<li>The Art of Computer Virus Research and Defense<br>Peter Szor</li>
</ul>


<!-- ====================================================================== -->
<h2><a name="topics">Topics</a></h2>
<ul>
<li>Introduction: Introduction to Information Security, Introduction to
Data Mining for Information Security</li>
<li> Malware Detection: Obfuscation, Polymorphism, Payloadbased detection
of worms, Botnet detection/takedown </li>
<li> Network Intrusion Detection: Signature-based solutions (Snort, etc),
Data-mining-based solutions (supervised and unsupervised), Deep packet
inspection</li>
<li>Host Intrusion Detection: Analysis of shell command sequences,
system call sequences, and audit trails,
Masquerader/Impersonator/Insider threat detection</li>
<li>Web Security: Anomaly detection of web-based attacks using web
server logs, Anomaly detection in web proxy logs</li>
<li>Email: Spam detection, Phishing detection</li>
<li>Social network security: Detecting compromised accounts, detecting
social network spam</li>
<li>Authentication: Anomaly detection of Single SignOn (Kerberos, Active
Directory), Detecting Pass-the-Hash and Pass-the-Ticket attacks</li>
<li>Automated correlation: Attack trees, Building attack scenarios from
individual alerts</li>
<li>Issues: Privacy issues, Adversarial machine learning (use of machine
learning by attackers, how to make ML algorithms robust/secure against
adversaries)</li>
<li>Other potential topics: Fraud detection, IoT/Infrastructure
security, Mobile/Wireless security</li>

</ul>
<!-- ====================================================================== -->
<h2><a name="reqs">Requirements</a></h2>
<p>
There will be 4 homework assignments. Students will design and implement data mining algorithms for various security applications taught in class. There will be a significant programming component in each assignment; assignments will also have reading components (mostly research literature) to give initial pointers to students about the problems in the programming component. Assignments will be chosen from a subset of the
following:
</p>

<ol>
<li>Web attack detection</li>
<li>User profiling for authentication and authorization </li>
<li>Network profiling and intrusion detection </li>
<li>Botnet detection </li>
<li>Host­-based insider threat detection </li>
<li> Deep packet inspection </li>
<li> Web proxy log analysis </li>
<li> Algorithmic alert correlation </li>
</ol>




<script type="text/javascript" async="" src="./CS259D_ Data Mining for Cyber Security - Autumn 2014_files/1e6ab715a3a95d4603.js.&#19979;&#36733;"></script></body></html>

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
body {
background-color: rgb(255, 255, 255);
}

a {
color: #990000;
}
a:visited {
color: #CC0000;
}

a.anchor {
font-weight: bold;
color: #000000;
}

h2 {
padding: 5px;
margin-top: 40px;
background-color: #990000;
color: #FFFFFF;
font-variant: small-caps;
}

h2 a {
color: #FFFFFF;
}

li, p {line-height: 20px;}

h1, h2 {
padding: 5px 5px;
}

h3, h4, p {
padding: 2px 5px;
}

li {
padding: 3px 0px;
}

li ol li {
list-style: lower-roman;
}

/**************************************************/
/********************* NAVBAR *********************/

div.navbar {
margin: 40px auto;
}

div.navbar ul {
text-align: center;
}

div.navbar li {
list-style: none;
display: inline;
padding: 20px;
font-size: 120%;
}


/**************************************************/
/********************* HEADER *********************/

#header { border: 7px solid #990000;}
#header img {float: left; }
#coursetitle { float: left; font-size:160%; padding-left: 20px;}
#coursetitle span { display: block;}

.clearfloat {
clear:both;
height:0;
font-size: 1px;
line-height: 0px;
}


/**************************************************/
/********************** INFO **********************/

table.courseinfo {
border-collapse:collapse;
border-top: 2px solid #CCCCCC;
border-bottom: 2px solid #CCCCCC;
margin: 10px auto;
width: 100%;
}

table.courseinfo th {
text-align: left;
padding-right: 20px;
}

table.courseinfo th, table.courseinfo td {
padding: 8px;
}

table.courseinfo tr.oddRow {background-color:#E1EBFF }
table.courseinfo tr.evenRow {background-color: #F0F5FF }

/**************************************************/
/******************** SCHEDULE ********************/

table.schedule {
border-collapse:collapse;
border-top: 2px solid black;
}

table.schedule th {
color: #FFFFFF;
}

table.schedule td, table.schedule th {
border: 1px solid #990000;
padding: 5px;
}

table.schedule tr.header th {
color: #000000;
border-bottom: 2px solid black;
background-color: #E1EBFF;
padding: 15px 10px;
text-align:center;
}

table.schedule tr.oddRow {background-color:#FFFFFF }
table.schedule tr.evenRow {background-color: #FFFFFF }

.slides {
color: #0066FF;
}

.slides:before {
content:"Class materials: ";
font-weight: bold;
}

.week_num {
font-weight: bold;
vertical-align: middle;
text-align: center;
}
.date {
font-weight: bold;
}
.hw {
font-size: 100%;
}
.who {
font-size: 100%;
}
.lec_title {
font-weight: bold; color: #990000;
}
.reading {
font-size: 100%;
}
.part {
background: #E1EBFF;
color: #000000;
font-size: 110%;
font-weight: bold;
padding: 15px 10px;
}

.optional {
display: block;
font-variant: small-caps;
}

.tbd {
color: Green;
}






Binary file added cs259D/Infrastructure.pdf
Binary file not shown.
Binary file added cs259D/Session1.pdf
Binary file not shown.
Binary file added cs259D/Session14.pdf
Binary file not shown.
Binary file added cs259D/Session16.pdf
Binary file not shown.
Binary file added cs259D/Session2.pdf
Binary file not shown.
Binary file added cs259D/Session20.pdf
Binary file not shown.
Binary file added cs259D/Session3.pdf
Binary file not shown.
Binary file added cs259D/StudentPresentations1.pdf
Binary file not shown.
Loading

0 comments on commit d7ca16d

Please sign in to comment.