-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
441 additions
and
0 deletions.
There are no files selected for viewing
214 changes: 214 additions & 0 deletions
214
cs259D/CS259D_ Data Mining for Cyber Security - Autumn 2014.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> | ||
<!-- saved from url=(0037)http://web.stanford.edu/class/cs259d/ --> | ||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> | ||
<title>CS259D: Data Mining for Cyber Security - Autumn 2014</title> | ||
<link href="./CS259D_ Data Mining for Cyber Security - Autumn 2014_files/styles.css" rel="stylesheet" type="text/css"> | ||
</head> | ||
<body> | ||
|
||
<div id="header"> | ||
<h1 id="coursetitle"> | ||
|
||
<span class="courseNumber">CS 259D</span> | ||
<span class="courseTitle">Data Mining for Cyber Security</span> | ||
<span class="courseSemester">Autumn 2014</span> | ||
</h1> | ||
<br class="clearfloat"> | ||
</div><!-- end #header --> | ||
|
||
<div class="navbar"> | ||
<ul> | ||
<!-- <li><a href="#announcements">Announcements</a></li> --> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#info">Course information</a></li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#lectures">Lectures</a></li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#hw">Homework</a></li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#readings">Readings</a></li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#topics">Topics</a></li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/#reqs">Requirements</a></li> | ||
|
||
</ul> | ||
</div> | ||
|
||
|
||
<!-- ====================================================================== --> | ||
|
||
<!-- <h2><a name="announcements" id="announcements">Announcements</a></h2> --> | ||
|
||
|
||
<!-- ====================================================================== --> | ||
|
||
<h2><a name="info">Course information</a></h2> | ||
|
||
<table class="courseinfo"> | ||
<tbody><tr class="oddRow"> | ||
<th scope="row"> | ||
Time | ||
</th> | ||
<td> | ||
TTh 4:15pm - 5:30pm | ||
</td> | ||
</tr> | ||
<tr class="evenRow"> | ||
<th scope="row"> | ||
Location | ||
</th> | ||
<td> | ||
<!-- <span class="tbd">TBD</span> --> | ||
<a href="http://campus-map.stanford.edu/?id=07-410&lat=37.4296917188&lng=-122.171585208&zoom=17&srch=Herrin%20Biology%20Hall">Herrin T175</a> (click for map) | ||
</td> | ||
</tr> | ||
<tr class="oddRow"> | ||
<th scope="row"> | ||
Staff | ||
</th> | ||
<td> | ||
<table class="staff"> | ||
<tbody><tr> | ||
<th scope="row">Instructor</th> | ||
<td>Bahman Bahmani</td> | ||
<td> | ||
bahman@cs | ||
</td> | ||
<td>Office Hours: 5:45 - 6:45pm outside the classroom</td> | ||
</tr> | ||
<tr><th scope="row">TA</th> | ||
<td>Dima Brezhnev</td> | ||
<td> | ||
brezhnev@cs | ||
</td> | ||
<td>Office Hours: 1:00 - 3:00pm Fridays @ Huang open area on bottom floor outside of ICME + extra office hours before assignment due dates</td> | ||
</tr> | ||
|
||
|
||
</tbody></table> | ||
</td> | ||
</tr> | ||
|
||
|
||
<tr class="evenRow"> | ||
<th scope="row"> | ||
Piazza | ||
</th> | ||
<td> | ||
<a href="http://www.piazza.com/stanford/autumn2014/cs259d">Link</a> | ||
</td> | ||
</tr> | ||
</tbody></table> | ||
|
||
<!-- Homeworks require access to the linguistic data on AFS. <a href="klog.html">Instructions to get access. --> | ||
|
||
|
||
<p><strong style="padding-right: 20px;">Description</strong> | ||
The massive increase in the rate of novel cyber attacks has made data-mining-based techniques a critical component in detecting security threats. The course covers various applications of data mining in computer and network security. Topics include: Overview of the state of information security; malware detection; network and host intrusion detection; web, email, and social network security; authentication and authorization anomaly detection; alert correlation; and potential issues such as privacy issues and adversarial machine learning. Prerequisites: Data mining / machine learning at the level of CS 246 or CS 229; familiarity with computer systems and networks at least at the level of CS 110; CS 140 and CS 144 strongly recommended; CS 155 recommended but not required. | ||
</p> | ||
<!-- ====================================================================== --> | ||
<h2><a name="lectures">Lectures</a></h2> | ||
<p> | ||
</p><ol> | ||
<li> <b>Introduction:</b> Overview of information security, current security landscape, the case for security data mining [<a href="http://web.stanford.edu/class/cs259d/lectures/Session1.pdf">pdf</a>]</li> | ||
<li> <b>Botnets:</b> Botnet topologies, botnet detection using NetFlow analysis [<a href="http://web.stanford.edu/class/cs259d/lectures/Session2.pdf">pdf</a>]</li> | ||
<li> <b>Botnets Cont'd, Insider Threats:</b> Botnet detection using DNS analysis, introduction to insider threats, masquerader detection strategies [<a href="http://web.stanford.edu/class/cs259d/lectures/Session3.pdf">pdf</a>] <br>Readings: | ||
<ul> | ||
<li><a href="http://web.stanford.edu/class/cs259d/readings/Insider_survey.pdf">A Survey of Insider Attack Detection Research</a> Skim before class and use the references for more information.</li> | ||
<li><a href="http://web.stanford.edu/class/cs259d/readings/Infrastructure.pdf">Insider IT Sabotage across US Critical Infrastructure</a> Appendix B</li> | ||
</ul> | ||
</li> | ||
<li> <b>Behavioral Biometrics:</b> Active authentication using behavioral and cognitive biometrics [<a href="http://web.stanford.edu/class/cs259d/lectures/Session4.pdf">pdf</a>] <br>Reading: Ch 4 + Ch 6 of "Behavioral Biometrics, A Remote Access Approach" by Kenneth Revett (2008). </li> | ||
<li> <b>Behavioral Biometrics Cont'd:</b> Mouse dynamics analysis for active authentication [<a href="http://web.stanford.edu/class/cs259d/lectures/Session5.pdf">pdf</a>]</li> | ||
<li> <b>Security at Wells Fargo:</b> Guest speaker Avi Avivi, VP Enterprise Information Security Architecture at Wells Fargo [<a href="http://web.stanford.edu/class/cs259d/lectures/Session6.pdf">pdf</a>]</li> | ||
<li> <b>Behavioral Biometrics Cont'd:</b> Mouse dynamics analysis cont'd, touch and swipe pattern analysis for mobile active authentication [<a href="http://web.stanford.edu/class/cs259d/lectures/Session7.pdf">pdf</a>]</li> | ||
<li> <b>Web Security:</b> Web threat detection via web server log analysis [<a href="http://web.stanford.edu/class/cs259d/lectures/Session8.pdf">pdf</a>]</li> | ||
<li> <b>Security at Union Bank:</b> Guest speaker Gary Lorenz, Chief Information Security Officer (CISO) and Managing Director at MUFG Union Bank | ||
</li><li> <b>Multi-Classifier Systems, Adversarial Machine-Learning:</b> Overview of multi-classifier systems (MCS), advantages of MCS in security analytics, security of machine learning [<a href="http://web.stanford.edu/class/cs259d/lectures/Session10.pdf">pdf</a>]</li> | ||
<li> <b>Security Data Mining at Google:</b> Guest speaker Massimiliano Poletto, head of Google Security Monitoring Tools group [<a href="http://web.stanford.edu/class/cs259d/lectures/Session11.pdf">pdf</a>]</li> | ||
<li> <b>Web Security Cont'd, Deep Packet Inspection:</b> Alert aggregation for web security, packet payload modeling for network intrusion detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session12.pdf">pdf</a>]</li> | ||
<li> <b>Machine Learning for Security:</b> Challenges in applying machine learning (ML) to security, guidelines for applying ML to security [<a href="http://web.stanford.edu/class/cs259d/lectures/Session13.pdf">pdf</a>]</li> | ||
<li> <b>Polymorphism:</b> Polymorphic blending attacks, infeasibility of modeling polymorphic attacks [<a href="http://web.stanford.edu/class/cs259d/lectures/Session14.pdf">pdf</a>]</li> | ||
<li> <b>Deep Packet Inspection Cont'd:</b> One-class multi-classifier systems, one-class MCS for packet payload modeling and network intrusion detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session15.pdf">pdf</a>] | ||
<br> Note to students: Please also refer to class notes for mathemtical derivations of one-class MCS fusion rules</li> | ||
<li> <b>Phishing Detection:</b> Phishing email detection, phishing website detection [<a href="http://web.stanford.edu/class/cs259d/lectures/Session16.pdf">pdf</a>]</li> | ||
<li> <b> Industry Perspectives:</b> Q&A with guest speaker Michael Fey, EVP and CTO of Intel Security Group (aka McAfee)</li> | ||
<li> <b> Student Presentations:</b> [<a href="http://web.stanford.edu/class/cs259d/lectures/StudentPresentations1.pdf">pdf</a>]</li> | ||
<li> <b> Student Presentations Cont'd:</b> [<a href="http://web.stanford.edu/class/cs259d/lectures/StudentPresentations2.pdf">pdf</a>]</li> | ||
<li> <b> Automatic Alert Correlation, Final Thoughts:</b> Building attack scenarios from individual alerts, course review, current and future trends in security [<a href="http://web.stanford.edu/class/cs259d/lectures/Session20.pdf">pdf</a>] | ||
</li></ol> | ||
<p></p> | ||
|
||
<h2><a name="hw">Homework</a></h2> | ||
<p> | ||
First homework: <a href="http://goo.gl/w4d8Ct">Google Doc</a>. It is due on 10/21. Submission instructions will be posted closer to the due date. | ||
</p> | ||
<p> | ||
Second homework: <a href="https://docs.google.com/document/d/1VF8DCRrmXTFf5-xQBFDO_IQxiUIyo7dPITG0mXZ8D7I">Google Doc</a>. It is due on 11/5 night. | ||
</p> | ||
<p> | ||
Third homework: <a href="https://docs.google.com/document/d/1DOoC-SHef-Xrdx6UoA03hAezlhJJy-kwFxofVEPXyvk/edit?usp=sharing">Google Doc</a>. It is due on Friday before Thanksgiving break. Note that this assignment requires you to sign up before 10/14 for a presentation. | ||
</p><p> | ||
Course Review/Fourth homework: <a href="https://docs.google.com/document/d/11asTJ1tC5x4c5OIKV8wfvKOBIh37TQOtznvZ8QV1uv4/edit?usp=sharing">Google Doc</a>. Due Friday 12/12 noon. Early submissions are appreciated. | ||
</p> | ||
<h2><a name="readings">Recommended Readings</a></h2> | ||
These titles are available for free online through the Stanford library resources. | ||
<ul> | ||
<li>Applications of Data Mining in Computer Security<br>Daniel Barbara and Sushil Jajodia</li> | ||
<li>Machine Learning and Data Mining for Computer Security<br>Marcus A. Maloof</li> | ||
<li>Enhancing Computer Security with Smart Technology<br> | ||
V Rao Vemuri</li> | ||
<li>Insider Attack and Cyber Security: Beyond the Hacker<br>S. Stolfo, S. Bellovin, S. Hershkop, A. Keromytis, S. Sinclair, S. Smith</li> | ||
<li>Network Anomaly Detection: A Machine Learning Perspective<br>Dhruba K. Bhattacharyya, Jugal K. Kalita</li> | ||
<li>Data Warehousing and Data Mining Techniques for Cyber Security<br>Anoop Singhal</li> | ||
<li>Crimeware, Understanding New Attacks and Defenses<br>Markus Jakobsson and Zulfikar Ramzan</li> | ||
<li>The Art of Computer Virus Research and Defense<br>Peter Szor</li> | ||
</ul> | ||
|
||
|
||
<!-- ====================================================================== --> | ||
<h2><a name="topics">Topics</a></h2> | ||
<ul> | ||
<li>Introduction: Introduction to Information Security, Introduction to | ||
Data Mining for Information Security</li> | ||
<li> Malware Detection: Obfuscation, Polymorphism, Payloadbased detection | ||
of worms, Botnet detection/takedown </li> | ||
<li> Network Intrusion Detection: Signature-based solutions (Snort, etc), | ||
Data-mining-based solutions (supervised and unsupervised), Deep packet | ||
inspection</li> | ||
<li>Host Intrusion Detection: Analysis of shell command sequences, | ||
system call sequences, and audit trails, | ||
Masquerader/Impersonator/Insider threat detection</li> | ||
<li>Web Security: Anomaly detection of web-based attacks using web | ||
server logs, Anomaly detection in web proxy logs</li> | ||
<li>Email: Spam detection, Phishing detection</li> | ||
<li>Social network security: Detecting compromised accounts, detecting | ||
social network spam</li> | ||
<li>Authentication: Anomaly detection of Single SignOn (Kerberos, Active | ||
Directory), Detecting Pass-the-Hash and Pass-the-Ticket attacks</li> | ||
<li>Automated correlation: Attack trees, Building attack scenarios from | ||
individual alerts</li> | ||
<li>Issues: Privacy issues, Adversarial machine learning (use of machine | ||
learning by attackers, how to make ML algorithms robust/secure against | ||
adversaries)</li> | ||
<li>Other potential topics: Fraud detection, IoT/Infrastructure | ||
security, Mobile/Wireless security</li> | ||
|
||
</ul> | ||
<!-- ====================================================================== --> | ||
<h2><a name="reqs">Requirements</a></h2> | ||
<p> | ||
There will be 4 homework assignments. Students will design and implement data mining algorithms for various security applications taught in class. There will be a significant programming component in each assignment; assignments will also have reading components (mostly research literature) to give initial pointers to students about the problems in the programming component. Assignments will be chosen from a subset of the | ||
following: | ||
</p> | ||
|
||
<ol> | ||
<li>Web attack detection</li> | ||
<li>User profiling for authentication and authorization </li> | ||
<li>Network profiling and intrusion detection </li> | ||
<li>Botnet detection </li> | ||
<li>Host-based insider threat detection </li> | ||
<li> Deep packet inspection </li> | ||
<li> Web proxy log analysis </li> | ||
<li> Algorithmic alert correlation </li> | ||
</ol> | ||
|
||
|
||
|
||
|
||
<script type="text/javascript" async="" src="./CS259D_ Data Mining for Cyber Security - Autumn 2014_files/1e6ab715a3a95d4603.js.下载"></script></body></html> |
2 changes: 2 additions & 0 deletions
2
cs259D/CS259D_ Data Mining for Cyber Security - Autumn 2014_files/1e6ab715a3a95d4603.js.下载
Large diffs are not rendered by default.
Oops, something went wrong.
183 changes: 183 additions & 0 deletions
183
cs259D/CS259D_ Data Mining for Cyber Security - Autumn 2014_files/styles.css
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
body { | ||
background-color: rgb(255, 255, 255); | ||
} | ||
|
||
a { | ||
color: #990000; | ||
} | ||
a:visited { | ||
color: #CC0000; | ||
} | ||
|
||
a.anchor { | ||
font-weight: bold; | ||
color: #000000; | ||
} | ||
|
||
h2 { | ||
padding: 5px; | ||
margin-top: 40px; | ||
background-color: #990000; | ||
color: #FFFFFF; | ||
font-variant: small-caps; | ||
} | ||
|
||
h2 a { | ||
color: #FFFFFF; | ||
} | ||
|
||
li, p {line-height: 20px;} | ||
|
||
h1, h2 { | ||
padding: 5px 5px; | ||
} | ||
|
||
h3, h4, p { | ||
padding: 2px 5px; | ||
} | ||
|
||
li { | ||
padding: 3px 0px; | ||
} | ||
|
||
li ol li { | ||
list-style: lower-roman; | ||
} | ||
|
||
/**************************************************/ | ||
/********************* NAVBAR *********************/ | ||
|
||
div.navbar { | ||
margin: 40px auto; | ||
} | ||
|
||
div.navbar ul { | ||
text-align: center; | ||
} | ||
|
||
div.navbar li { | ||
list-style: none; | ||
display: inline; | ||
padding: 20px; | ||
font-size: 120%; | ||
} | ||
|
||
|
||
/**************************************************/ | ||
/********************* HEADER *********************/ | ||
|
||
#header { border: 7px solid #990000;} | ||
#header img {float: left; } | ||
#coursetitle { float: left; font-size:160%; padding-left: 20px;} | ||
#coursetitle span { display: block;} | ||
|
||
.clearfloat { | ||
clear:both; | ||
height:0; | ||
font-size: 1px; | ||
line-height: 0px; | ||
} | ||
|
||
|
||
/**************************************************/ | ||
/********************** INFO **********************/ | ||
|
||
table.courseinfo { | ||
border-collapse:collapse; | ||
border-top: 2px solid #CCCCCC; | ||
border-bottom: 2px solid #CCCCCC; | ||
margin: 10px auto; | ||
width: 100%; | ||
} | ||
|
||
table.courseinfo th { | ||
text-align: left; | ||
padding-right: 20px; | ||
} | ||
|
||
table.courseinfo th, table.courseinfo td { | ||
padding: 8px; | ||
} | ||
|
||
table.courseinfo tr.oddRow {background-color:#E1EBFF } | ||
table.courseinfo tr.evenRow {background-color: #F0F5FF } | ||
|
||
/**************************************************/ | ||
/******************** SCHEDULE ********************/ | ||
|
||
table.schedule { | ||
border-collapse:collapse; | ||
border-top: 2px solid black; | ||
} | ||
|
||
table.schedule th { | ||
color: #FFFFFF; | ||
} | ||
|
||
table.schedule td, table.schedule th { | ||
border: 1px solid #990000; | ||
padding: 5px; | ||
} | ||
|
||
table.schedule tr.header th { | ||
color: #000000; | ||
border-bottom: 2px solid black; | ||
background-color: #E1EBFF; | ||
padding: 15px 10px; | ||
text-align:center; | ||
} | ||
|
||
table.schedule tr.oddRow {background-color:#FFFFFF } | ||
table.schedule tr.evenRow {background-color: #FFFFFF } | ||
|
||
.slides { | ||
color: #0066FF; | ||
} | ||
|
||
.slides:before { | ||
content:"Class materials: "; | ||
font-weight: bold; | ||
} | ||
|
||
.week_num { | ||
font-weight: bold; | ||
vertical-align: middle; | ||
text-align: center; | ||
} | ||
.date { | ||
font-weight: bold; | ||
} | ||
.hw { | ||
font-size: 100%; | ||
} | ||
.who { | ||
font-size: 100%; | ||
} | ||
.lec_title { | ||
font-weight: bold; color: #990000; | ||
} | ||
.reading { | ||
font-size: 100%; | ||
} | ||
.part { | ||
background: #E1EBFF; | ||
color: #000000; | ||
font-size: 110%; | ||
font-weight: bold; | ||
padding: 15px 10px; | ||
} | ||
|
||
.optional { | ||
display: block; | ||
font-variant: small-caps; | ||
} | ||
|
||
.tbd { | ||
color: Green; | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.