title | emoji | colorFrom | colorTo | sdk | sdk_version | python_version | app_file | pinned |
---|---|---|---|---|---|---|---|---|
Ukrainian TTS |
🐌 |
blue |
yellow |
gradio |
3.14 |
3.10.3 |
app.py |
false |
Ukrainian TTS (text-to-speech) using ESPNET.
Link to online demo -> https://huggingface.co/spaces/robinhad/ukrainian-tts
Note: online demo saves user input to improve user experience; by using it, you consent to analyze this data.
Link to source code and models -> https://github.com/robinhad/ukrainian-tts
Telegram bot -> https://t.me/uk_tts_bot
- Completely offline
- Multiple voices
- Automatic stress with priority queue:
acute
->user-defined
>dictionary
>model
- Control speech speed
- Python package works on Windows, Mac (x86/M1), Linux(x86/ARM)
- Inference on mobile devices (inference models through
espnet_onnx
without cleaners)
If you like my work, please support ❤️ -> https://send.monobank.ua/jar/48iHq4xAXm
For collaboration and questions please contact me here:
Telegram https://t.me/robinhad
Twitter https://twitter.com/robinhad
You're welcome to join UA Speech Recognition and Synthesis community: Telegram https://t.me/speech_recognition_uk
Tetiana (female)
:
tetiana.mp4
More voices 📢🤖
Dmytro (male)
:
dmytro.mp4
Lada (female)
:
lada.mp4
Mykyta (male)
:
mykyta.mp4
See example notebook: tts_example.ipynb
Link to guide: training/STEPS.md
- Model training - Yurii Paniv @robinhad
- Open Source Ukrainian Text-to-Speech dataset - Yehor Smoliakov @egorsmkv
- Dmytro voice - Dmytro Chaplynskyi @dchaplinsky
- Silence cutting using HMM-GMM - Volodymyr Kyrylov @proger
- Autostress (with dictionary) using ukrainian-word-stress - Oleksiy Syvokon @asivokon
- Autostress (with model) using ukrainian-accentor - Bohdan Mykhailenko @NeonBohdan + Yehor Smoliakov @egorsmkv