Skip to content

Commit

Permalink
3rd course
Browse files Browse the repository at this point in the history
  • Loading branch information
rliu054 committed Sep 24, 2018
1 parent 7e922ef commit 2a2d98e
Show file tree
Hide file tree
Showing 20 changed files with 11,187 additions and 0 deletions.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

155 changes: 155 additions & 0 deletions Convolutional Neural Networks/week_1/cnn_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops

def load_dataset():
train_dataset = h5py.File('datasets/train_signs.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

test_dataset = h5py.File('datasets/test_signs.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

classes = np.array(test_dataset["list_classes"][:]) # the list of classes

train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes


def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""

m = X.shape[0] # number of training examples
mini_batches = []
np.random.seed(seed)

# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[permutation,:,:,:]
shuffled_Y = Y[permutation,:]

# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]
mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)

# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]
mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)

return mini_batches


def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)].T
return Y


def forward_propagation_for_predict(X, parameters):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
the shapes are given in initialize_parameters
Returns:
Z3 -- the output of the last LINEAR unit
"""

# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
# Numpy Equivalents:
Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3

return Z3

def predict(X, parameters):

W1 = tf.convert_to_tensor(parameters["W1"])
b1 = tf.convert_to_tensor(parameters["b1"])
W2 = tf.convert_to_tensor(parameters["W2"])
b2 = tf.convert_to_tensor(parameters["b2"])
W3 = tf.convert_to_tensor(parameters["W3"])
b3 = tf.convert_to_tensor(parameters["b3"])

params = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}

x = tf.placeholder("float", [12288, 1])

z3 = forward_propagation_for_predict(x, params)
p = tf.argmax(z3)

sess = tf.Session()
prediction = sess.run(p, feed_dict = {x: X})

return prediction

#def predict(X, parameters):
#
# W1 = tf.convert_to_tensor(parameters["W1"])
# b1 = tf.convert_to_tensor(parameters["b1"])
# W2 = tf.convert_to_tensor(parameters["W2"])
# b2 = tf.convert_to_tensor(parameters["b2"])
## W3 = tf.convert_to_tensor(parameters["W3"])
## b3 = tf.convert_to_tensor(parameters["b3"])
#
## params = {"W1": W1,
## "b1": b1,
## "W2": W2,
## "b2": b2,
## "W3": W3,
## "b3": b3}
#
# params = {"W1": W1,
# "b1": b1,
# "W2": W2,
# "b2": b2}
#
# x = tf.placeholder("float", [12288, 1])
#
# z3 = forward_propagation(x, params)
# p = tf.argmax(z3)
#
# with tf.Session() as sess:
# prediction = sess.run(p, feed_dict = {x: X})
#
# return prediction
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 2a2d98e

Please sign in to comment.