Skip to content

rojinsafavi/CancerDetection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CancerDetection

https://www.kaggle.com/c/histopathologic-cancer-detection

Dependencies

For install dependencies. Run

pip3 install -r requirements.txt

Testing

Models are presented here

Solo models

Number of expetiment Augmentation Network architecture Additional params Accuracy
1 A ResNet18 Epoch 18 0.9028
2 A ResNet18 Epoch 1 0.8897
3 A MobileNetV2 Epoch 1 0.8892
4 A MobileNetV2 Epoch 6 0.8850
5 A MobileNet Epoch 7 0.8839
6 A ResNet50 Epoch 7 0.8948
7 A ResNet50 Epoch 17 0.8949
8 B ResNet18 Epoch 2 0.9016
9 B ResNet18 Epoch 3 0.9044
10 B ResNet18 Epoch 6 0.9072
11 B ResNet18 Epoch 9 0.9080
12 B ResNet18 Epoch 12 0.8985
13 B ResNet18 Epoch 22 0.8878

Ensembling

Number of expetiment Threshold Number network from prev. table Accuracy
1 Without thr 1, 3, 6 - 12 0.9515
1 > 0.8 = 1 1, 3, 6 - 12 0.9510
1 > 0.5 = 1 1, 3, 6 - 12 0.9484

Types of augmentation

A

# pretrained ImageNet network
T.Resize((224,224))
T.ColorJitter(brightness=0.5, contrast=0.5),
T.RandomRotation((0, 5)),
T.Normalize(mean, std) # ImageNet

B

# pretrained ImageNet network
T.Resize((224,224))
T.ColorJitter(brightness=0.5, contrast=0.5),
T.RandomRotation((-90, 90)),
T.RandomHorizontalFlip(p=0.5),
T.RandomVerticalFlip(p=0.5)
T.Normalize(mean, std) # ImageNet

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%