https://www.kaggle.com/c/histopathologic-cancer-detection
For install dependencies. Run
pip3 install -r requirements.txt
Models are presented here
Number of expetiment | Augmentation | Network architecture | Additional params | Accuracy |
---|---|---|---|---|
1 | A | ResNet18 | Epoch 18 | 0.9028 |
2 | A | ResNet18 | Epoch 1 | 0.8897 |
3 | A | MobileNetV2 | Epoch 1 | 0.8892 |
4 | A | MobileNetV2 | Epoch 6 | 0.8850 |
5 | A | MobileNet | Epoch 7 | 0.8839 |
6 | A | ResNet50 | Epoch 7 | 0.8948 |
7 | A | ResNet50 | Epoch 17 | 0.8949 |
8 | B | ResNet18 | Epoch 2 | 0.9016 |
9 | B | ResNet18 | Epoch 3 | 0.9044 |
10 | B | ResNet18 | Epoch 6 | 0.9072 |
11 | B | ResNet18 | Epoch 9 | 0.9080 |
12 | B | ResNet18 | Epoch 12 | 0.8985 |
13 | B | ResNet18 | Epoch 22 | 0.8878 |
Number of expetiment | Threshold | Number network from prev. table | Accuracy |
---|---|---|---|
1 | Without thr | 1, 3, 6 - 12 | 0.9515 |
1 | > 0.8 = 1 | 1, 3, 6 - 12 | 0.9510 |
1 | > 0.5 = 1 | 1, 3, 6 - 12 | 0.9484 |
# pretrained ImageNet network
T.Resize((224,224))
T.ColorJitter(brightness=0.5, contrast=0.5),
T.RandomRotation((0, 5)),
T.Normalize(mean, std) # ImageNet
# pretrained ImageNet network
T.Resize((224,224))
T.ColorJitter(brightness=0.5, contrast=0.5),
T.RandomRotation((-90, 90)),
T.RandomHorizontalFlip(p=0.5),
T.RandomVerticalFlip(p=0.5)
T.Normalize(mean, std) # ImageNet