-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
662 additions
and
59 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.tree import DecisionTreeClassifier | ||
from sklearn.metrics import accuracy_score | ||
import numpy as np | ||
|
||
|
||
class MyRandomForestClassifier: | ||
def __init__(self, n_estimators): | ||
self.n_estimators = n_estimators | ||
|
||
def fit(self, X, y): | ||
self.trees = [DecisionTreeClassifier(random_state=1).fit(X, y) | ||
for _ in range(self.n_estimators)] | ||
return self | ||
|
||
def predict(self, X): | ||
yp = [tree.predict(X) for tree in self.trees] | ||
return ((np.sum(yp, 0) / len(self.trees)) > 0.5).astype(int) | ||
|
||
def score(self, X, y): | ||
return accuracy_score(y, self.predict(X)) |
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#include "neuralnet.cpp" | ||
|
||
// RankNet as in Burges et al (2005) | ||
// Uses a neural network for ranking. | ||
|
||
struct RankNet : NeuralNet | ||
{ | ||
RankNet(int hidden_nodes) : NeuralNet(hidden_nodes, false) { | ||
} | ||
|
||
virtual void fit(mat X, const ivec& y, int maxit) { | ||
build(X.n_cols, hidden_nodes); | ||
X = fitnorm(X); | ||
|
||
/* int n1 = 0; | ||
for(unsigned int i = 0; i < y.n_elem; i++) | ||
if(y[i] == 1) | ||
n1++; | ||
unsigned int _maxit = maxit/n1; | ||
cout << "maxit: " << _maxit << endl;*/ | ||
|
||
for(int t = 0; t < maxit; t++) { | ||
double errors = 0; | ||
for(unsigned int i = 0; i < X.n_rows; i++) | ||
for(unsigned int j = 0; j < X.n_rows; j++) { | ||
if(i == j) | ||
continue; | ||
#if 1 // ignore same -- they only affect the threshold, not the learning | ||
if(y[i] == y[j]) | ||
continue; | ||
#endif | ||
double P = (y[i] - y[j] + 1)/2.; | ||
|
||
mat* l1 = fprop(X.row(i)); | ||
mat* l2 = fprop(X.row(j)); | ||
|
||
double s = l1[2][0] - l2[2][0]; | ||
double C = exp(s)/(exp(s)+1) - P; | ||
|
||
backprop(C, -1, l1[0], l1[1], l1[2]); | ||
backprop(C, +1, l2[0], l2[1], l2[2]); | ||
errors += abs(C); | ||
delete [] l1; | ||
delete [] l2; | ||
} | ||
if(t % 100 == 0) | ||
cout << t << " - " << errors << endl; | ||
if(errors/(X.n_rows*(X.n_rows-1)) < 0.01) | ||
break; | ||
} | ||
|
||
vec H(X.n_rows); | ||
scores(X, false, H); | ||
th = choose_threshold(H, y); | ||
} | ||
}; | ||
|
||
//** wrapper | ||
|
||
extern "C" { | ||
NeuralNet* RankNet_new(int hidden_nodes, bool balanced) { | ||
return new RankNet(hidden_nodes); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
# Wrapper around cpp/neuralnet.cpp | ||
|
||
import os | ||
os.system('cpp/compile.sh') | ||
print 'compiled neuralnet.cpp -> libneuralnet.so' | ||
|
||
import ctypes | ||
lib = ctypes.cdll.LoadLibrary('cpp/libneuralnet.so') | ||
|
||
import numpy as np | ||
from sklearn.base import BaseEstimator, ClassifierMixin | ||
|
||
|
||
class NeuralNet(BaseEstimator, ClassifierMixin): | ||
def __init__(self, hidden_nodes, balanced, ranker=False, maxit=1000): | ||
self.obj = None | ||
self.hidden_nodes = hidden_nodes | ||
self.balanced = balanced | ||
self.ranker = ranker | ||
self.maxit = maxit | ||
self.classes_ = (0, 1) | ||
|
||
def __del__(self): | ||
if self.obj is not None: | ||
lib.NeuralNet_delete(self.obj) | ||
|
||
def fit(self, X, y): | ||
# it's ugly, but better to allocate nnet c++ here | ||
if self.obj is not None: | ||
lib.NeuralNet_delete(self.obj) | ||
|
||
X = np.asarray(X, np.float64, 'F') | ||
y = np.asarray(y, np.int32) | ||
Xptr = ctypes.c_void_p(X.ctypes.data) | ||
yptr = ctypes.c_void_p(y.ctypes.data) | ||
|
||
if self.ranker: | ||
self.obj = lib.RankNet_new(self.hidden_nodes) | ||
else: | ||
self.obj = lib.NeuralNet_new(self.hidden_nodes, self.balanced) | ||
lib.NeuralNet_fit(self.obj, X.shape[1], X.shape[0], Xptr, yptr, self.maxit) | ||
return self | ||
|
||
def predict(self, X): | ||
X = np.asarray(X, np.float64, 'F') | ||
y = np.zeros(len(X), np.int32) | ||
Xptr = ctypes.c_void_p(X.ctypes.data) | ||
yptr = ctypes.c_void_p(y.ctypes.data) | ||
lib.NeuralNet_predict(self.obj, X.shape[1], X.shape[0], Xptr, yptr) | ||
return y | ||
|
||
def predict_proba(self, X): | ||
X = np.asarray(X, np.float64, 'F') | ||
s = np.zeros(len(X), np.float64) | ||
Xptr = ctypes.c_void_p(X.ctypes.data) | ||
sptr = ctypes.c_void_p(s.ctypes.data) | ||
lib.NeuralNet_scores(self.obj, X.shape[1], X.shape[0], Xptr, sptr) | ||
return s | ||
|
||
|
||
class RankNet(NeuralNet): | ||
def __init__(self, hidden_nodes, maxit=1000): | ||
NeuralNet.__init__(self, hidden_nodes, False, True, maxit) |
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# Songfeng Zheng, "QBoost: Predicting quantiles with boosting for regression | ||
# and binary classification" (2012) | ||
|
||
from sklearn.base import clone, BaseEstimator, ClassifierMixin | ||
from sklearn.tree import DecisionTreeRegressor | ||
import numpy as np | ||
from scipy.stats import norm | ||
|
||
|
||
def K(x, h): | ||
return norm.pdf(x, scale=h) | ||
|
||
|
||
class ZerosDummyModel: | ||
def __init__(self, tau): | ||
pass | ||
|
||
def fit(self, X, y): | ||
return self | ||
|
||
def predict(self, X): | ||
return np.zeros(len(X)) | ||
|
||
|
||
class QBC(BaseEstimator, ClassifierMixin): | ||
def __init__(self, tau, M=100, eta=0.1, h=0.1, base_estimator=None): | ||
self.tau = tau | ||
self.M = M | ||
self.eta = eta | ||
self.h = h | ||
self.first_estimator = ZerosDummyModel(tau) | ||
if base_estimator is None: | ||
base_estimator = DecisionTreeRegressor(max_depth=1) | ||
self.base_estimator = base_estimator | ||
self.classes_ = [0, 1] | ||
|
||
def fit(self, X, y): | ||
self.fs = [self.first_estimator] | ||
# step 0 | ||
f = self.first_estimator.fit(X, y) | ||
# step 1 | ||
for m in range(self.M): | ||
f = self.predict_proba(X) | ||
# step 2 | ||
U = (y-(1-self.tau))*K(f, self.h) | ||
# step 3 | ||
g = clone(self.base_estimator).fit(X, U) | ||
# step 4 | ||
self.fs.append(g) | ||
return self | ||
|
||
def predict_proba(self, X): | ||
f0 = self.fs[0].predict(X) | ||
r = np.sum([self.eta * f.predict(X) for f in self.fs[1:]], 0) | ||
return f0 + r | ||
|
||
def predict(self, X): | ||
return (self.predict_proba(X) >= 0).astype(int) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.ensemble import GradientBoostingClassifier | ||
from sklearn.dummy import DummyClassifier | ||
from qbc import QBC | ||
from sklearn import datasets | ||
from sklearn.metrics import confusion_matrix | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
print('Testing quantile regression...') | ||
|
||
_datasets = [ | ||
(datasets.load_iris, 1), | ||
(lambda _: datasets.load_digits(10, True), 5), | ||
] | ||
|
||
quantiles = [0.1, 0.9] | ||
|
||
n_estimators = 100 | ||
eta = 0.1 | ||
|
||
models = [ | ||
('dummy', lambda tau: DummyClassifier('most_frequent')), | ||
('gboost', lambda _: GradientBoostingClassifier( | ||
learning_rate=eta, n_estimators=n_estimators, max_depth=1)), | ||
('qbc', lambda tau: QBC(tau, n_estimators, eta)), | ||
] | ||
|
||
for dataset, th in _datasets: | ||
print('# dataset %s' % dataset.__name__) | ||
X, y = dataset(True) | ||
y = (y >= th).astype(int) | ||
yps = [[np.zeros(len(y)) for _ in quantiles] for _ in models] | ||
Xtr, Xts, ytr, yts = train_test_split(X, y, train_size=0.8) | ||
for q, tau in enumerate(quantiles): | ||
print('## quantile %.2f' % tau) | ||
for i, (name, model) in enumerate(models): | ||
m = model(tau).fit(Xtr, ytr) | ||
yp = m.predict(Xts) | ||
|
||
(TNR, FPR), (FNR, TPR) = confusion_matrix(yts, yp)/len(yts) | ||
print('%10s: FP: %.3f, FN: %.3f' % (name, FPR, FNR)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import numpy as np | ||
from sklearn.ensemble import RandomForestRegressor | ||
from sklearn.base import BaseEstimator, RegressorMixin | ||
|
||
|
||
# approach inspired by: | ||
# http://blog.datadive.net/prediction-intervals-for-random-forests/ | ||
|
||
class QBag(BaseEstimator, RegressorMixin): | ||
def __init__(self, tau, base_estimator=None): | ||
self.tau = tau | ||
if base_estimator is None: | ||
base_estimator = RandomForestRegressor(100) | ||
self.base_estimator = base_estimator | ||
|
||
def fit(self, X, y): | ||
self.base_estimator.fit(X, y) | ||
return self | ||
|
||
def predict(self, X): | ||
yp = np.zeros(len(X)) | ||
ms = self.base_estimator.estimators_ | ||
for i, x in enumerate(X): | ||
yps = [m.predict([x])[0] for m in ms] | ||
yp[i] = np.percentile(yps, self.tau*100) | ||
return yp |
Oops, something went wrong.