-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
357 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
python3.8 test_intent.py --test_file "${1}" --ckpt_path ckpt/intent/best.pt --pred_file "${2}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
from typing import Dict | ||
|
||
import torch | ||
from torch.nn import Embedding | ||
|
||
class SeqClassifier(torch.nn.Module): | ||
def __init__( | ||
self, | ||
embeddings: torch.tensor, | ||
hidden_size: int, | ||
num_layers: int, | ||
dropout_rate: float, | ||
bidirectional: bool, | ||
num_class: int, | ||
) -> None: | ||
super(SeqClassifier, self).__init__() | ||
self.num_layers = num_layers | ||
self.hidden_size = hidden_size | ||
self.bidirectional = bidirectional | ||
self.embed = Embedding.from_pretrained(embeddings, freeze=False) | ||
# TODO: model architecture | ||
self.dim_embeddings = 300 | ||
self.gru = torch.nn.GRU(self.dim_embeddings, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional) | ||
# self.lstm = torch.nn.LSTM(self.dim_embeddings, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional, bias = False) | ||
self.dropout = torch.nn.Dropout(dropout_rate) | ||
self.classifier = torch.nn.Linear(hidden_size*2, num_class) if bidirectional else torch.nn.Linear(hidden_size, num_class) | ||
|
||
@property | ||
def encoder_output_size(self) -> int: | ||
# calculate the output dimension of rnn | ||
if self.bidirectional: | ||
return 2 * self.hidden_size | ||
return self.hidden_size | ||
|
||
def forward(self, batch) -> Dict[str, torch.Tensor]: | ||
# TODO: implement model forward | ||
# print('batch', batch.shape) | ||
# print(batch) | ||
context = self.embed(batch) | ||
# context_outs, (context_h_n, _) = self.lstm(context) | ||
_, context_h_n = self.gru(context) | ||
# print('context_outs.shape', context_outs.shape) | ||
context_h_n = self.dropout(context_h_n) | ||
out = torch.cat((context_h_n[-1], context_h_n[-2]), axis=-1) if self.bidirectional else context_h_n[-1] | ||
# print('context_h_n.shape', context_h_n.shape) | ||
out = self.classifier(out) | ||
return out | ||
|
||
|
||
class SlotClassifier(torch.nn.Module): | ||
def __init__( | ||
self, | ||
embeddings: torch.tensor, | ||
hidden_size: int, | ||
num_layers: int, | ||
dropout_rate: float, | ||
bidirectional: bool, | ||
num_class: int, | ||
) -> None: | ||
super(SlotClassifier, self).__init__() | ||
self.num_layers = num_layers | ||
self.hidden_size = hidden_size | ||
self.bidirectional = bidirectional | ||
self.num_class = num_class | ||
self.embed = Embedding.from_pretrained(embeddings, freeze=False) | ||
# TODO: model architecture | ||
self.dim_embeddings = 300 | ||
# self.lstm = torch.nn.LSTM(self.dim_embeddings, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional) | ||
self.gru = torch.nn.GRU(self.dim_embeddings, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional) | ||
self.dropout = torch.nn.Dropout(dropout_rate) | ||
self.classifier = torch.nn.Linear(hidden_size*2, num_class) if bidirectional else torch.nn.Linear(hidden_size, num_class) | ||
|
||
@property | ||
def encoder_output_size(self) -> int: | ||
# calculate the output dimension of rnn | ||
if self.bidirectional: | ||
return 2 * self.hidden_size | ||
return self.hidden_size | ||
|
||
def forward(self, batch) -> Dict[str, torch.Tensor]: | ||
# TODO: implement model forward | ||
# print('batch', batch.shape) | ||
# print(batch) | ||
context = self.embed(batch) | ||
# context_outs, _ = self.lstm(context) | ||
context_outs, _ = self.gru(context) | ||
# print('context_outs.shape', context_outs.shape) | ||
out = self.dropout(context_outs) | ||
# print('out.shape', out.shape) | ||
out = self.classifier(out) | ||
out = out.view(-1,self.num_class) | ||
# print(out.shape) | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
python3.8 test_slot.py --test_file "${1}" --ckpt_path ckpt/slot/slot-best.pt --pred_file "${2}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import json | ||
import pickle | ||
from argparse import ArgumentParser, Namespace | ||
from pathlib import Path | ||
from typing import Dict | ||
|
||
import torch | ||
|
||
from dataset import SeqClsDataset | ||
from model import SeqClassifier | ||
from utils import Vocab | ||
from torch.utils.data import DataLoader | ||
|
||
import pandas as pd | ||
|
||
|
||
def main(args): | ||
with open(args.cache_dir / "vocab.pkl", "rb") as f: | ||
vocab: Vocab = pickle.load(f) | ||
|
||
intent_idx_path = args.cache_dir / "intent2idx.json" | ||
intent2idx: Dict[str, int] = json.loads(intent_idx_path.read_text()) | ||
|
||
data = json.loads(args.test_file.read_text()) | ||
dataset = SeqClsDataset(data, vocab, intent2idx, args.max_len) | ||
# TODO: crecate DataLoader for test dataset | ||
test_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False) | ||
|
||
embeddings = torch.load(args.cache_dir / "embeddings.pt") | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
model = SeqClassifier( | ||
embeddings, | ||
args.hidden_size, | ||
args.num_layers, | ||
args.dropout, | ||
args.bidirectional, | ||
dataset.num_classes, | ||
).to(device) | ||
|
||
|
||
model.eval() | ||
|
||
# load weights into model | ||
model.load_state_dict(torch.load(args.ckpt_path, map_location=torch.device(device))) | ||
|
||
# TODO: predict dataset | ||
preds = [] | ||
for idx, data in enumerate(test_loader): | ||
text = torch.Tensor(vocab.encode_batch([t.split(' ') for t in data['text']])).type(torch.LongTensor) | ||
text = text.to(device) | ||
outputs = model(text) | ||
preds += [dataset.idx2label(p.detach().cpu().item()) for p in outputs.argmax(dim=1)] | ||
|
||
# TODO: write prediction to file (args.pred_file) | ||
# print('idxs', [ f'test-{i}' for i in range(len(preds)) ]) | ||
# print('preds', preds) | ||
|
||
df = pd.DataFrame({'id':[f'test-{i}' for i in range(len(preds))], 'intent': preds}) | ||
df.to_csv(args.pred_file, index=False) | ||
|
||
def parse_args() -> Namespace: | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
"--test_file", | ||
type=Path, | ||
help="Path to the test file.", | ||
required=True | ||
) | ||
parser.add_argument( | ||
"--cache_dir", | ||
type=Path, | ||
help="Directory to the preprocessed caches.", | ||
default="./cache/intent/", | ||
) | ||
parser.add_argument( | ||
"--ckpt_path", | ||
type=Path, | ||
help="Path to model checkpoint.", | ||
required=True | ||
) | ||
parser.add_argument("--pred_file", type=Path, default="pred.intent.csv") | ||
|
||
# data | ||
parser.add_argument("--max_len", type=int, default=None) | ||
|
||
# model | ||
parser.add_argument("--hidden_size", type=int, default=512) | ||
parser.add_argument("--num_layers", type=int, default=2) | ||
parser.add_argument("--dropout", type=float, default=0.4) | ||
parser.add_argument("--bidirectional", type=bool, default=True) | ||
|
||
# data loader | ||
parser.add_argument("--batch_size", type=int, default=128) | ||
|
||
parser.add_argument( | ||
"--device", type=torch.device, help="cpu, cuda, cuda:0, cuda:1", default="cpu" | ||
) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import json | ||
import pickle | ||
from argparse import ArgumentParser, Namespace | ||
from pathlib import Path | ||
from typing import Dict | ||
|
||
import torch | ||
|
||
from dataset import SlotClsDataset | ||
from model import SlotClassifier | ||
from utils import Vocab | ||
from torch.utils.data import DataLoader | ||
|
||
import pandas as pd | ||
|
||
|
||
def main(args): | ||
with open(args.cache_dir / "vocab.pkl", "rb") as f: | ||
vocab: Vocab = pickle.load(f) | ||
|
||
slot_idx_path = args.cache_dir / "tag2idx.json" | ||
tag2idx: Dict[str, int] = json.loads(slot_idx_path.read_text()) | ||
|
||
data = json.loads(args.test_file.read_text()) | ||
dataset = SlotClsDataset(data, vocab, tag2idx, args.max_len) | ||
# TODO: crecate DataLoader for test dataset | ||
test_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False) | ||
|
||
embeddings = torch.load(args.cache_dir / "embeddings.pt") | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
model = SlotClassifier( | ||
embeddings, | ||
args.hidden_size, | ||
args.num_layers, | ||
args.dropout, | ||
args.bidirectional, | ||
dataset.num_classes, | ||
).to(device) | ||
|
||
|
||
model.eval() | ||
|
||
# load weights into model | ||
model.load_state_dict(torch.load(args.ckpt_path, map_location=torch.device(device))) | ||
|
||
# TODO: predict dataset | ||
preds = [] | ||
with torch.no_grad(): | ||
for idx, data in enumerate(test_loader): | ||
text = torch.Tensor(vocab.encode_batch([t.split(' ') for t in data['tokens']])).type(torch.LongTensor) | ||
bz, batch_seq_len = text.shape[0], text.shape[1] | ||
# seq_str_tags = [t.split(' ') for t in data['tags']] | ||
text = text.to(device) | ||
outputs = model(text).view(bz,-1,9) | ||
|
||
for idx, indice in enumerate(data['length']): | ||
preds += [[dataset.idx2label(p.detach().cpu().item()) for p in outputs[idx,:indice].argmax(dim=1)]] | ||
|
||
# TODO: write prediction to file (args.pred_file) | ||
sep = ' ' | ||
preds = [sep.join(p) for p in preds] | ||
print('preds', len(preds), preds[0]) | ||
|
||
df = pd.DataFrame({'id':[f'test-{i}' for i in range(len(preds))], 'tags': preds}) | ||
df.to_csv(args.pred_file, index=False) | ||
|
||
def parse_args() -> Namespace: | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
"--test_file", | ||
type=Path, | ||
help="Path to the test file.", | ||
required=True | ||
) | ||
parser.add_argument( | ||
"--cache_dir", | ||
type=Path, | ||
help="Directory to the preprocessed caches.", | ||
default="./cache/slot/", | ||
) | ||
parser.add_argument( | ||
"--ckpt_path", | ||
type=Path, | ||
help="Path to model checkpoint.", | ||
required=True | ||
) | ||
parser.add_argument("--pred_file", type=Path, default="pred.slot.csv") | ||
|
||
# data | ||
parser.add_argument("--max_len", type=int, default=None) | ||
|
||
# model | ||
parser.add_argument("--hidden_size", type=int, default=128) | ||
parser.add_argument("--num_layers", type=int, default=2) | ||
parser.add_argument("--dropout", type=float, default=0.4) | ||
parser.add_argument("--bidirectional", type=bool, default=True) | ||
|
||
# data loader | ||
parser.add_argument("--batch_size", type=int, default=128) | ||
|
||
parser.add_argument( | ||
"--device", type=torch.device, help="cpu, cuda, cuda:0, cuda:1", default="cpu" | ||
) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
from typing import Iterable, List | ||
|
||
|
||
class Vocab: | ||
PAD = "[PAD]" | ||
UNK = "[UNK]" | ||
|
||
def __init__(self, vocab: Iterable[str]) -> None: | ||
self.token2idx = { | ||
Vocab.PAD: 0, | ||
Vocab.UNK: 1, | ||
**{token: i for i, token in enumerate(vocab, 2)}, | ||
} | ||
|
||
@property | ||
def pad_id(self) -> int: | ||
return self.token2idx[Vocab.PAD] | ||
|
||
@property | ||
def unk_id(self) -> int: | ||
return self.token2idx[Vocab.UNK] | ||
|
||
@property | ||
def tokens(self) -> List[str]: | ||
return list(self.token2idx.keys()) | ||
|
||
def token_to_id(self, token: str) -> int: | ||
return self.token2idx.get(token, self.unk_id) | ||
|
||
def encode(self, tokens: List[str]) -> List[int]: | ||
return [self.token_to_id(token) for token in tokens] | ||
|
||
def encode_batch( | ||
self, batch_tokens: List[List[str]], to_len: int = None | ||
) -> List[List[int]]: | ||
batch_ids = [self.encode(tokens) for tokens in batch_tokens] | ||
to_len = max(len(ids) for ids in batch_ids) if to_len is None else to_len | ||
padded_ids = pad_to_len(batch_ids, to_len, self.pad_id) | ||
return padded_ids | ||
|
||
|
||
def pad_to_len(seqs: List[List[int]], to_len: int, padding: int) -> List[List[int]]: | ||
paddeds = [seq[:to_len] + [padding] * max(0, to_len - len(seq)) for seq in seqs] | ||
return paddeds |