Skip to content

Commit

Permalink
updates
Browse files Browse the repository at this point in the history
  • Loading branch information
Ritam Guha authored and Ritam Guha committed Nov 6, 2020
1 parent f9eed89 commit bae711c
Show file tree
Hide file tree
Showing 4 changed files with 19 additions and 19 deletions.
36 changes: 18 additions & 18 deletions Py_FS.egg-info/PKG-INFO
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: Py-FS
Version: 0.0.6.8
Version: 0.0.6.9
Summary: A Python Package for Feature Selection
Home-page: https://github.com/Ritam-Guha/Py_FS
Author: Ritam Guha
Expand Down Expand Up @@ -137,18 +137,18 @@ Description: # Py_FS: A Python Package for Feature Selection

These wrapper approaches can be imported in your code using the following statements:

import Py_FS.wrapper.nature_inspired.BBA
import Py_FS.wrapper.nature_inspired.CS
import Py_FS.wrapper.nature_inspired.EO
import Py_FS.wrapper.nature_inspired.GA
import Py_FS.wrapper.nature_inspired.GSA
import Py_FS.wrapper.nature_inspired.GWO
import Py_FS.wrapper.nature_inspired.HS
import Py_FS.wrapper.nature_inspired.MA
import Py_FS.wrapper.nature_inspired.PSO
import Py_FS.wrapper.nature_inspired.RDA
import Py_FS.wrapper.nature_inspired.SCA
import Py_FS.wrapper.nature_inspired.WOA
from Py_FS.wrapper.nature_inspired import BBA
from Py_FS.wrapper.nature_inspired import CS
from Py_FS.wrapper.nature_inspired import EO
from Py_FS.wrapper.nature_inspired import GA
from Py_FS.wrapper.nature_inspired import GSA
from Py_FS.wrapper.nature_inspired import GWO
from Py_FS.wrapper.nature_inspired import HS
from Py_FS.wrapper.nature_inspired import MA
from Py_FS.wrapper.nature_inspired import PSO
from Py_FS.wrapper.nature_inspired import RDA
from Py_FS.wrapper.nature_inspired import SCA
from Py_FS.wrapper.nature_inspired import WOA

## 2. Filter-based Feature Selection
Filter methods do not use any intermediate learning algorithm to verify the strength of the generated solutions. Instead, they use statistical measures to identify the importance of different features in the context. So, finally every feature gets a rank according to their relevance in the dataset. The top features can then be used for classification.
Expand All @@ -161,10 +161,10 @@ Description: # Py_FS: A Python Package for Feature Selection

These filter approaches can be imported in your code using the following statements:

import Py_FS.filter.PCC
import Py_FS.filter.SCC
import Py_FS.filter.Relief
import Py_FS.filter.MI
from Py_FS.filter import PCC
from Py_FS.filter import SCC
from Py_FS.filter import Relief
from Py_FS.filter import MI

## 3. Evaluation Metrics
The package comes with tools to evaluate features before or after FS. This helps to easily compare and analyze
Expand All @@ -180,7 +180,7 @@ Description: # Py_FS: A Python Package for Feature Selection

The evaulation capabilities can be imported in your code using the following statement:

import Py_FS.evaluation.evaluate
from Py_FS.evaluation import evaluate


## User Manual
Expand Down
Binary file not shown.
Binary file not shown.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

setuptools.setup(
name='Py_FS',
version='0.0.6.8',
version='0.0.6.9',
author="Ritam Guha",
author_email="[email protected]",
description="A Python Package for Feature Selection",
Expand Down

0 comments on commit bae711c

Please sign in to comment.