Skip to content

A forecasting automation tool with state of the art algorithms and techniques

Notifications You must be signed in to change notification settings

sahbic/forecast-machine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PredOps

PredOps is a forecasting tool with the following features:

  • Various forecast methods:
    • Time series statistical methods
    • Forest ensemble algorithms
    • Deep Learning approaches
  • Ability to call multiple remote compute environments
  • Back-testing
  • Segmentation capabilities
  • Time segmentation for a more precise forecast

The project will implement the following MLOps practices:

  • Experiment tracking
  • Performance monitoring
  • Retraining
  • CI/CD/CT

Installation

python3 -m venv venv
source venv/bin/activate
# On windows powershell
# .\venv\Scripts\Activate.ps1
python -m pip install --upgrade pip setuptools wheel
pip install -e .

Installation of the development environment:

python -m pip install -e ".[dev]"

How to run

CLI

Example: M5 Project

  1. Download data
predops download-data m5a
  1. Generate base file (with sample option)
predops generate-base-file m5a --sample
  1. Train models: search, train and evaluate
# default parameters
predops train m5a --target Quantity
# advanced parameters
predops train m5a --target Quantity --number-predictions 28 --column-segment-groupby store_id --n-predictions-groupby 7

MLFlow

MLFlow allows to track the experiments

mlflow ui --backend-store-uri "sqlite:///mlflow.db"

References

About

A forecasting automation tool with state of the art algorithms and techniques

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published