PredOps is a forecasting tool with the following features:
- Various forecast methods:
- Time series statistical methods
- Forest ensemble algorithms
- Deep Learning approaches
- Ability to call multiple remote compute environments
- Back-testing
- Segmentation capabilities
- Time segmentation for a more precise forecast
The project will implement the following MLOps practices:
- Experiment tracking
- Performance monitoring
- Retraining
- CI/CD/CT
python3 -m venv venv
source venv/bin/activate
# On windows powershell
# .\venv\Scripts\Activate.ps1
python -m pip install --upgrade pip setuptools wheel
pip install -e .
Installation of the development environment:
python -m pip install -e ".[dev]"
- Download data
predops download-data m5a
- Generate base file (with sample option)
predops generate-base-file m5a --sample
- Train models: search, train and evaluate
# default parameters
predops train m5a --target Quantity
# advanced parameters
predops train m5a --target Quantity --number-predictions 28 --column-segment-groupby store_id --n-predictions-groupby 7
MLFlow allows to track the experiments
mlflow ui --backend-store-uri "sqlite:///mlflow.db"
- M5 Competition 4th place
- Best practices of developement fron madewithml repository