forked from patrickloeber/pytorch-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1aa7918
commit 64e088d
Showing
2 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
## PyTorch Tutorial - RNN & LSTM & GRU | ||
Implement a Recurrent Neural Net (RNN) in PyTorch! Learn how we can use the nn.RNN module and work with an input sequence. I also show you how easily we can switch to a gated recurrent unit (GRU) or long short-term memory (LSTM) RNN. | ||
|
||
## Watch the Tutorial | ||
[![Alt text](https://img.youtube.com/vi/0_PgWWmauHk/hqdefault.jpg)](https://youtu.be/0_PgWWmauHk) | ||
|
||
## Resources | ||
Beginner PyTorch Course: | ||
https://github.com/python-engineer/pytorchTutorial | ||
|
||
RNN: | ||
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html | ||
|
||
LSTM: | ||
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html | ||
|
||
GRU: | ||
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html | ||
|
||
|
||
Further Readings: | ||
|
||
- https://karpathy.github.io/2015/05/21/rnn-effectiveness/ | ||
- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#architecture | ||
- https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
# Device configuration | ||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
# Hyper-parameters | ||
# input_size = 784 # 28x28 | ||
num_classes = 10 | ||
num_epochs = 2 | ||
batch_size = 100 | ||
learning_rate = 0.001 | ||
|
||
input_size = 28 | ||
sequence_length = 28 | ||
hidden_size = 128 | ||
num_layers = 2 | ||
|
||
# MNIST dataset | ||
train_dataset = torchvision.datasets.MNIST(root='./data', | ||
train=True, | ||
transform=transforms.ToTensor(), | ||
download=True) | ||
|
||
test_dataset = torchvision.datasets.MNIST(root='./data', | ||
train=False, | ||
transform=transforms.ToTensor()) | ||
|
||
# Data loader | ||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | ||
batch_size=batch_size, | ||
shuffle=True) | ||
|
||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
batch_size=batch_size, | ||
shuffle=False) | ||
|
||
|
||
# Fully connected neural network with one hidden layer | ||
class RNN(nn.Module): | ||
def __init__(self, input_size, hidden_size, num_layers, num_classes): | ||
super(RNN, self).__init__() | ||
self.num_layers = num_layers | ||
self.hidden_size = hidden_size | ||
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) | ||
# -> x needs to be: (batch_size, seq, input_size) | ||
|
||
# or: | ||
#self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) | ||
#self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) | ||
self.fc = nn.Linear(hidden_size, num_classes) | ||
|
||
def forward(self, x): | ||
# Set initial hidden states (and cell states for LSTM) | ||
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) | ||
#c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) | ||
|
||
# x: (n, 28, 28), h0: (2, n, 128) | ||
|
||
# Forward propagate RNN | ||
out, _ = self.rnn(x, h0) | ||
# or: | ||
#out, _ = self.lstm(x, (h0,c0)) | ||
|
||
# out: tensor of shape (batch_size, seq_length, hidden_size) | ||
# out: (n, 28, 128) | ||
|
||
# Decode the hidden state of the last time step | ||
out = out[:, -1, :] | ||
# out: (n, 128) | ||
|
||
out = self.fc(out) | ||
# out: (n, 10) | ||
return out | ||
|
||
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device) | ||
|
||
# Loss and optimizer | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | ||
|
||
# Train the model | ||
n_total_steps = len(train_loader) | ||
for epoch in range(num_epochs): | ||
for i, (images, labels) in enumerate(train_loader): | ||
# origin shape: [N, 1, 28, 28] | ||
# resized: [N, 28, 28] | ||
images = images.reshape(-1, sequence_length, input_size).to(device) | ||
labels = labels.to(device) | ||
|
||
# Forward pass | ||
outputs = model(images) | ||
loss = criterion(outputs, labels) | ||
|
||
# Backward and optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if (i+1) % 100 == 0: | ||
print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}') | ||
|
||
# Test the model | ||
# In test phase, we don't need to compute gradients (for memory efficiency) | ||
with torch.no_grad(): | ||
n_correct = 0 | ||
n_samples = 0 | ||
for images, labels in test_loader: | ||
images = images.reshape(-1, sequence_length, input_size).to(device) | ||
labels = labels.to(device) | ||
outputs = model(images) | ||
# max returns (value ,index) | ||
_, predicted = torch.max(outputs.data, 1) | ||
n_samples += labels.size(0) | ||
n_correct += (predicted == labels).sum().item() | ||
|
||
acc = 100.0 * n_correct / n_samples | ||
print(f'Accuracy of the network on the 10000 test images: {acc} %') |