-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e1d5a07
commit e712d41
Showing
1 changed file
with
152 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import caffe | ||
import numpy as np | ||
import time | ||
import os | ||
import sys | ||
|
||
if len(sys.argv) == 1: | ||
start_snapshot = 0 | ||
|
||
nz = 100 # latent vector dimension | ||
image_size = 64 # image size | ||
max_iter = int(1e6) # maximum number of iterations | ||
display_every = 20 # show losses every so many iterations | ||
snapshot_every = 1000 # snapshot every so many iterations | ||
snapshot_folder = 'snapshots_test' # where to save the snapshots (and load from) | ||
gpu_id = 0 | ||
feat_shape = (nz,) | ||
im_size = (3,image_size,image_size) | ||
batch_size = 64 | ||
snapshot_at_iter = -1 | ||
snapshot_at_iter_file = 'snapshot_at_iter.txt' | ||
|
||
sub_nets = ('generator', 'discriminator', 'data') | ||
|
||
if not os.path.exists(snapshot_folder): | ||
os.makedirs(snapshot_folder) | ||
|
||
#make solvers | ||
with open ("solver_template.prototxt", "r") as myfile: | ||
solver_template=myfile.read() | ||
|
||
for curr_net in sub_nets: | ||
with open("solver_%s.prototxt" % curr_net, "w") as myfile: | ||
myfile.write(solver_template.replace('@NET@', curr_net)) | ||
|
||
#initialize the nets | ||
caffe.set_device(gpu_id) | ||
caffe.set_mode_gpu() | ||
generator = caffe.AdamSolver('solver_generator.prototxt') | ||
discriminator = caffe.AdamSolver('solver_discriminator.prototxt') | ||
data_reader = caffe.AdamSolver('solver_data.prototxt') | ||
|
||
|
||
#load from snapshot | ||
if start_snapshot: | ||
curr_snapshot_folder = snapshot_folder +'/' + str(start_snapshot) | ||
print >> sys.stderr, '\n === Starting from snapshot ' + curr_snapshot_folder + ' ===\n' | ||
generator_caffemodel = curr_snapshot_folder +'/' + 'generator.caffemodel' | ||
if os.path.isfile(generator_caffemodel): | ||
generator.net.copy_from(generator_caffemodel) | ||
else: | ||
raise Exception('File %s does not exist' % generator_caffemodel) | ||
discriminator_caffemodel = curr_snapshot_folder +'/' + 'discriminator.caffemodel' | ||
if os.path.isfile(discriminator_caffemodel): | ||
discriminator.net.copy_from(discriminator_caffemodel) | ||
else: | ||
raise Exception('File %s does not exist' % discriminator_caffemodel) | ||
|
||
#read weights of losses | ||
discr_loss_weight = discriminator.net._blob_loss_weights[discriminator.net._blob_names_index['discr_loss']] | ||
|
||
train_discr = True | ||
train_gen = True | ||
|
||
#do training | ||
start = time.time() | ||
for it in range(start_snapshot,max_iter): | ||
# read the data | ||
data_reader.net.forward_simple() | ||
# feed the data to the generator and run it | ||
generator.net.blobs['feat'].data[...] = np.random.normal(0, 1, (64, nz)).astype(np.float32) | ||
generator.net.forward_simple() | ||
generated_img = generator.net.blobs['generated'].data | ||
# run the discriminator on real data | ||
discriminator.net.blobs['data'].data[...] = data_reader.net.blobs['data'].data | ||
discriminator.net.blobs['label'].data[...] = np.ones((batch_size,1), dtype='float32') | ||
# discriminator.net.blobs['feat'].data[...] = feat_real | ||
discriminator.net.forward_simple() | ||
discr_real_loss = np.copy(discriminator.net.blobs['discr_loss'].data) | ||
if train_discr: | ||
discriminator.increment_iter() | ||
discriminator.net.clear_param_diffs() | ||
discriminator.net.backward_simple() | ||
|
||
# run the discriminator on generated data | ||
discriminator.net.blobs['data'].data[...] = generated_img | ||
discriminator.net.blobs['label'].data[...] = np.zeros((batch_size,1), dtype='float32') | ||
# discriminator.net.blobs['feat'].data[...] = feat_real | ||
discriminator.net.forward_simple() | ||
discr_fake_loss = np.copy(discriminator.net.blobs['discr_loss'].data) | ||
if train_discr: | ||
discriminator.net.backward_simple() | ||
discriminator.apply_update() | ||
|
||
# run the discriminator on generated data with opposite labels, to get the gradient for the generator | ||
# discriminator.net.blobs['data'].data[...] = generated_img | ||
discriminator.net.blobs['label'].data[...] = np.ones((batch_size,1), dtype='float32') | ||
# discriminator.net.blobs['feat'].data[...] = feat_real | ||
discriminator.net.forward_simple() | ||
discr_fake_for_generator_loss = np.copy(discriminator.net.blobs['discr_loss'].data) | ||
if train_gen: | ||
generator.increment_iter() | ||
generator.net.clear_param_diffs() | ||
# encoder.net.backward_simple() | ||
discriminator.net.backward_simple() | ||
|
||
# generator.net.blobs['generated'].diff[...] = encoder.net.blobs['data'].diff + discriminator.net.blobs['data'].diff | ||
generator.net.blobs['generated'].diff[...] = discriminator.net.blobs['data'].diff | ||
generator.net.backward_simple() | ||
generator.apply_update() | ||
|
||
# add by samson | ||
# encoder.apply_update() | ||
|
||
#display | ||
if it % display_every == 0: | ||
print >> sys.stderr, "[%s] Iteration %d: %f seconds" % (time.strftime("%c"), it, time.time()-start) | ||
print >> sys.stderr, " discr real loss: %e * %e = %f" % (discr_real_loss, discr_loss_weight, discr_real_loss*discr_loss_weight) | ||
print >> sys.stderr, " discr fake loss: %e * %e = %f" % (discr_fake_loss, discr_loss_weight, discr_fake_loss*discr_loss_weight) | ||
print >> sys.stderr, " discr fake loss for generator: %e * %e = %f" % (discr_fake_for_generator_loss, discr_loss_weight, discr_fake_for_generator_loss*discr_loss_weight) | ||
start = time.time() | ||
if os.path.isfile(snapshot_at_iter_file): | ||
with open (snapshot_at_iter_file, "r") as myfile: | ||
snapshot_at_iter = int(myfile.read()) | ||
|
||
#snapshot | ||
if it % snapshot_every == 0 or it == snapshot_at_iter: | ||
curr_snapshot_folder = snapshot_folder +'/' + str(it) | ||
print >> sys.stderr, '\n === Saving snapshot to ' + curr_snapshot_folder + ' ===\n' | ||
if not os.path.exists(curr_snapshot_folder): | ||
os.makedirs(curr_snapshot_folder) | ||
generator_caffemodel = curr_snapshot_folder + '/' + 'generator.caffemodel' | ||
generator.net.save(generator_caffemodel) | ||
discriminator_caffemodel = curr_snapshot_folder + '/' + 'discriminator.caffemodel' | ||
discriminator.net.save(discriminator_caffemodel) | ||
# encoder.net.save(curr_snapshot_folder + '/' + 'encoder.caffemodel') | ||
|
||
#switch optimizing discriminator and generator, so that neither of them overfits too much | ||
discr_loss_ratio = (discr_real_loss + discr_fake_loss) / discr_fake_for_generator_loss | ||
if discr_loss_ratio < 1e-1 and train_discr: | ||
train_discr = False | ||
train_gen = True | ||
print >> sys.stderr, "<<< real_loss=%e, fake_loss=%e, fake_loss_for_generator=%e, train_discr=%d, train_gen=%d >>>" % (discr_real_loss, discr_fake_loss, discr_fake_for_generator_loss, train_discr, train_gen) | ||
if discr_loss_ratio > 5e-1 and not train_discr: | ||
train_discr = True | ||
train_gen = True | ||
print >> sys.stderr, " <<< real_loss=%e, fake_loss=%e, fake_loss_for_generator=%e, train_discr=%d, train_gen=%d >>>" % (discr_real_loss, discr_fake_loss, discr_fake_for_generator_loss, train_discr, train_gen) | ||
if discr_loss_ratio > 1e1 and train_gen: | ||
train_gen = False | ||
train_discr = True | ||
print >> sys.stderr, "<<< real_loss=%e, fake_loss=%e, fake_loss_for_generator=%e, train_discr=%d, train_gen=%d >>>" % (discr_real_loss, discr_fake_loss, discr_fake_for_generator_loss, train_discr, train_gen) | ||
|