Welcome to the FS River Plugin for Elasticsearch
This river plugin helps to index documents from your local file system and using SSH.
WARNING: If you use this river in a multinode mode on different servers without SSH, you need to ensure that the river can access files on the same mounting point. If not, when a node stop, the other node will think that your local dir is empty and will erase all your docs.
If you are looking for another version documentation, please refer to the compatibility matrix.
You can create the most simple river as follow:
PUT _river/mydocs/_meta
{
"type" : "fs"
}
This will scan every 15 minutes all documents available in /esdir
dir will index them into mydocs
index using
doc
type.
We create the river with the following properties :
- FS URL:
/tmp
orc:\\tmp
if you use Microsoft Windows OS - Get only docs like
*.doc
and*.pdf
- Don't index
resume*
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"includes": "*.doc,*.pdf",
"excludes": "resume"
}
}
By default, update_rate
is set to 15m
. You can modify this value using any compatible
time unit.
For example, here is a 15 minutes update rate.
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"update_rate": "15m"
}
}
Or a 3 hours update rate.
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"update_rate": "3h"
}
}
We add another river with the following properties :
- FS URL:
/tmp2
- Update Rate: every hour
- Get only docs like
*.doc
,*.xls
and*.pdf
By the way, we define to index in the same index/type as the previous one (see Bulk settings for details):
- index:
docs
- type:
doc
PUT _river/mynewriver/_meta
{
"type": "fs",
"fs": {
"url": "/tmp2",
"update_rate": "1h",
"includes": [ "*.doc" , "*.xls", "*.pdf" ]
},
"index": {
"index": "docs",
"type": "doc",
"bulk_size": 50
}
}
You can now index files remotely using SSH.
- FS URL:
/tmp3
- Server:
mynode.mydomain.com
- Username:
username
- Password:
password
- Protocol:
ssh
(default tolocal
) - Port:
22
(default to22
) - Update Rate: every hour
- Get only docs like
*.doc
,*.xls
and*.pdf
PUT _river/mysshriver/_meta
{
"type": "fs",
"fs": {
"url": "/tmp3",
"server": "mynode.mydomain.com",
"port": 22,
"username": "username",
"password": "password",
"protocol": "ssh",
"update_rate": "1h",
"includes": [ "*.doc" , "*.xls", "*.pdf" ]
}
}
- FS URL:
/tmp3
- Server:
mynode.mydomain.com
- Username:
username
- PEM File:
/path/to/private_key.pem
- Protocol:
ssh
(default tolocal
) - Port:
22
(default to22
) - Update Rate: every hour
- Get only docs like
*.doc
,*.xls
and*.pdf
PUT _river/mysshriver/_meta
{
"type": "fs",
"fs": {
"url": "/tmp3",
"server": "mynode.mydomain.com",
"port": 22,
"username": "username",
"pem_path": "/path/to/private_key.pem",
"protocol": "ssh",
"update_rate": "1h",
"includes": [ "*.doc" , "*.xls", "*.pdf" ]
}
}
This is a common use case in elasticsearch, we want to search for something ;-)
GET docs/doc/_search
{
"query" : {
"match" : {
"_all" : "I am searching for something !"
}
}
}
If you want to index JSon files directly without parsing them through the attachment mapper plugin, you
can set json_support
to true
.
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"update_rate": "1h",
"json_support" : true
}
}
Of course, if you did not define a mapping prior creating the river, Elasticsearch will auto guess the mapping.
If you have more than one type, create as many rivers as types:
PUT _river/mydocs1/_meta
{
"type": "fs",
"fs": {
"url": "/tmp/type1",
"update_rate": "1h",
"json_support" : true
},
"index": {
"index": "mydocs",
"type": "type1"
}
}
PUT _river/mydocs2/_meta
{
"type": "fs",
"fs": {
"url": "/tmp/type2",
"update_rate": "1h",
"json_support" : true
},
"index": {
"index": "mydocs",
"type": "type2"
}
}
You can also index many types from one single dir using two rivers on the same dir and by setting
includes
parameter:
PUT _river/mydocs1/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"update_rate": "1h",
"includes": [ "type1*.json" ],
"json_support" : true
},
"index": {
"index": "mydocs",
"type": "type1"
}
}
PUT _river/mydocs2/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"update_rate": "1h",
"includes": [ "type2*.json" ],
"json_support" : true
},
"index": {
"index": "mydocs",
"type": "type2"
}
}
Please note that the document _id
is always generated (hash value) from the JSon filename to avoid issues with
special characters in filename.
You can force to use the _id
to be the filename using filename_as_id
attribute:
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"update_rate": "1h",
"json_support": true,
"filename_as_id": true
}
}
By default, FSRiver will create a field to store the original file size in octet. You can disable it using `add_filesize' option:
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"add_filesize": false
}
}
If you don't want to remove indexed documents when you remove a file or a directory, you can
set remove_deleted
to false
(default to true
):
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"remove_deleted": false
}
}
If you need to stop a river, you can call the `_stop' endpoint:
GET _river/mydocs/_stop
To restart the river from the previous point, just call _start
end point:
GET _river/mydocs/_start
When the FSRiver detect a new type, it creates automatically a mapping for this type.
{
"doc" : {
"properties" : {
"content" : {
"type" : "string",
"store" : "yes"
},
"meta" : {
"properties" : {
"author" : {
"type" : "string",
"store" : "yes"
},
"title" : {
"type" : "string",
"store" : "yes"
},
"date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"keywords" : {
"type" : "string",
"store" : "yes"
}
}
},
"file" : {
"properties" : {
"content_type" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"last_modified" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"indexing_date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"filesize" : {
"type" : "long",
"store" : "yes"
},
"indexed_chars" : {
"type" : "long",
"store" : "yes"
},
"filename" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"url" : {
"type" : "string",
"store" : "yes",
"index" : "no"
}
}
},
"path" : {
"properties" : {
"encoded" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"virtual" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"root" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"real" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
}
}
}
}
}
}
If you want to define your own mapping to set analyzers for example, you can push the mapping before starting the FS River.
# Create index
PUT docs
# Create the mapping
PUT docs/doc/_mapping
{
"doc" : {
"properties" : {
"content" : {
"type" : "string",
"store" : "yes",
"analyzer" : "french"
},
"meta" : {
"properties" : {
"author" : {
"type" : "string",
"store" : "yes"
},
"title" : {
"type" : "string",
"store" : "yes"
},
"date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"keywords" : {
"type" : "string",
"store" : "yes"
}
}
},
"file" : {
"properties" : {
"content_type" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"last_modified" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"indexing_date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"filesize" : {
"type" : "long",
"store" : "yes"
},
"indexed_chars" : {
"type" : "long",
"store" : "yes"
},
"filename" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"url" : {
"type" : "string",
"store" : "yes",
"index" : "no"
}
}
},
"path" : {
"properties" : {
"encoded" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"virtual" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"root" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"real" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
}
}
}
}
}
}
FS River creates the following fields :
Field (>= 0.4.0) | Field (< 0.4.0) | Description | Example |
---|---|---|---|
content |
file.file |
Extracted content | "This is my text!" |
attachment |
file |
BASE64 encoded binary file | BASE64 Encoded document |
meta.author |
file.author |
Author if any in document metadata | "David Pilato" |
meta.title |
file.title |
Title if any in document metadata | "My document title" |
meta.date |
Document date if any in document metadata | "2013-04-04T15:21:35" |
|
meta.keywords |
Keywords if any in document metadata | ["river","fs","elasticsearch"] |
|
file.content_type |
file.content_type |
Content Type | "application/vnd.oasis.opendocument.text" |
file.last_modified |
Last modification date | 1386855978000 |
|
file.indexing_date |
postDate |
Indexing date | "2013-12-12T13:50:58.758Z" |
file.filesize |
filesize |
File size in bytes | 1256362 |
file.indexed_chars |
file.indexed_chars |
Extracted chars if fs.indexed_chars > 0 |
100000 |
file.filename |
name |
Original file name | "mydocument.pdf" |
file.url |
Original file url | "file://tmp/mydir/otherdir/mydocument.pdf" |
|
path.encoded |
pathEncoded |
BASE64 encoded file path (for internal use) | "112aed83738239dbfe4485f024cd4ce1" |
path.virtual |
virtualpath |
Relative path from root path | "mydir/otherdir" |
path.root |
rootpath |
BASE64 encoded root path (for internal use) | "112aed83738239dbfe4485f024cd4ce1" |
path.real |
Actual real path name | "/tmp/mydir/otherdir/mydocument.pdf" |
Here is a typical JSON document generated by the river:
{
"file":{
"filename":"test.odt",
"last_modified":1386855978000,
"indexing_date":"2013-12-12T13:50:58.758Z",
"content_type":"application/vnd.oasis.opendocument.text",
"url":"file:///tmp/testfs_metadata/test.odt",
"indexed_chars":100000,
"filesize":8355
},
"path":{
"encoded":"bceb3913f6d793e915beb70a4735592",
"root":"bceb3913f6d793e915beb70a4735592",
"virtual":"",
"real":"/tmp/testfs_metadata/test.odt"
},
"meta":{
"author":"David Pilato",
"title":"Mon titre",
"date":"2013-04-04T15:21:35",
"keywords":[
"fs",
"elasticsearch",
"river"
]
},
"content":"Bonjour David\n\n\n"
}
You can use meta fields to perform search on.
GET docs/doc/_search
{
"query" : {
"term" : {
"file.filename" : "mydocument.pdf"
}
}
}
If you don't need to highlight your search responses nor need to get back the original file from
Elasticsearch, you can think about disabling _source
field.
In that case, you need to store file.filename
field. Otherwise, FSRiver won't be able to remove documents when
they disappear from your hard drive.
{
"doc" : {
"_source" : { "enabled" : false },
"properties" : {
"content" : {
"type" : "string",
"store" : "yes"
},
"meta" : {
"properties" : {
"author" : {
"type" : "string",
"store" : "yes"
},
"title" : {
"type" : "string",
"store" : "yes"
},
"date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"keywords" : {
"type" : "string",
"store" : "yes"
}
}
},
"file" : {
"properties" : {
"content_type" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"last_modified" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"indexing_date" : {
"type" : "date",
"format" : "dateOptionalTime",
"store" : "yes"
},
"filesize" : {
"type" : "long",
"store" : "yes"
},
"indexed_chars" : {
"type" : "long",
"store" : "yes"
},
"filename" : {
"type" : "string",
"analyzer" : "not_analyzed",
"store" : "yes"
},
"url" : {
"type" : "string",
"store" : "yes",
"index" : "no"
}
}
},
"path" : {
"properties" : {
"encoded" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"virtual" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"root" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
},
"real" : {
"type" : "string",
"store" : "yes",
"index" : "not_analyzed"
}
}
}
}
}
}
You can store in elasticsearch itself the binary document using store_source
option:
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"update_rate": "1h",
"store_source": true
}
}
In that case, a new stored field named attachment
is added to the generated JSon document.
If you let FSRiver generates the mapping, FSRiver will exclude attachment
field from
_source
to save some disk space.
That means you need to ask for field attachment
when querying:
GET mydocs/doc/_search
{
"fields" : ["attachment", "_source"],
"query":{
"match_all" : {}
}
}
Default generated mapping in this case is:
{
"doc" : {
"_source" : {
"excludes" : [ "attachment" ]
},
"properties" : {
"attachment" : {
"type" : "binary"
},
... // Other properties here
}
}
}
You can force not to store attachment
field and keep attachment
in _source
:
# Create index
PUT docs
# Create the mapping
PUT docs/doc/_mapping
{
"doc" : {
"properties" : {
"attachment" : {
"type" : "binary",
"store" : "no"
},
... // Other properties here
}
}
}
By default FSRiver will extract only a limited size of characters (100000).
But, you can set indexed_chars
to 1
in FSRiver definition.
PUT _river/mydocs/_meta
{
"type": "fs",
"fs": {
"url": "/tmp",
"indexed_chars": 1
}
}
That option will add a special field _indexed_chars
to the document. It will be set to the filesize.
This field is used by mapper attachment plugin to define the number of extracted characters.
Setting indexed_chars : x
will compute file size, multiply it with x and pass it to Tika using _indexed_chars
field.
That means that a value of 0.8 will extract 20% less characters than the file size. A value of 1.5 will extract 50% more characters than the filesize (think compressed files). A value of 1, will extract exactly the filesize.
Note that Tika requires to allocate in memory a data structure to extract text. Setting indexed_chars
to a high
number will require more memory!
You can change some indexing settings:
index.index
sets the index name where your documents will be indexed (default to river name)index.type
sets the type name for your documents (default todoc
)index.bulk_size
set the maximum number of documents per bulk before a bulk is sent to elasticsearch (default to100
)index.flush_interval
set the bulk flush interval frequency (default to5s
). It will be use to process bulk even if bulk is not fill withbulk_size
documents.
For example:
PUT _river/myriver/_meta
{
"type": "fs",
"fs": {
"url": "/sales"
},
"index": {
"index": "acme",
"type": "sales",
"bulk_size": 10,
"flush_interval": "30s"
}
}
Some important changes have been done in FSRiver 0.4.0:
- You don't have to add attachment plugin anymore as we directly rely on Apache Tika.
- Fields have changed. You should look at Generated Fields section to know how the old fields have been renamed.
Here is a full list of existing settings:
Name | Documentation |
---|---|
fs.url |
Creating a Local FS river |
fs.update_rate |
Creating a Local FS river |
fs.includes |
Creating a Local FS river |
fs.excludes |
Creating a Local FS river |
fs.server |
Indexing using SSH |
fs.port |
Indexing using SSH |
fs.username |
Indexing using SSH |
fs.password |
Indexing using SSH |
fs.protocol |
Indexing using SSH |
fs.pem_path |
Indexing using SSH |
fs.json_support |
Indexing JSon docs |
fs.filename_as_id |
Indexing JSon docs |
fs.add_filesize |
Disabling file size field |
fs.remove_deleted |
Ignore deleted files |
fs.indexed_chars |
Extracted characters |
fs.store_source |
Storing binary source document |
index.index |
Bulk settings |
index.type |
Bulk settings |
index.bulk_size |
Bulk settings |
index.flush_interval |
Bulk settings |
To activate traces (DEBUG
or TRACE
level), you need to modify config/logging.yml
and set
fr.pilato.elasticsearch.river.fs
to the desired log level:
es.logger.level: INFO
rootLogger: ${es.logger.level}, console, file
logger:
# TRACE fsriver
fr.pilato.elasticsearch.river.fs: TRACE
This software is licensed under the Apache 2 license, quoted below.
Copyright 2011-2014 David Pilato
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.