Skip to content
/ P2D Public

[ICCV 2023] Predict to Detect: Prediction-guided 3D Object Detection using Sequential Images

Notifications You must be signed in to change notification settings

sanmin0312/P2D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

P2D

Predict to Detect: Prediction-guided 3D Object Detection using Sequential Images, ICCV 2023 (Paper, Supplementary)

Abstract

Recent camera-based 3D object detection methods have introduced sequential frames to improve the detection performance hoping that multiple frames would mitigate the large depth estimation error. Despite improved detection performance, prior works rely on naive fusion methods (e.g., concatenation) or are limited to static scenes (e.g., temporal stereo), neglecting the importance of the motion cue of objects. These approaches do not fully exploit the potential of sequential images and show limited performance improvements. To address this limitation, we propose a novel 3D object detection model, P2D (Predict to Detect), that integrates a prediction scheme into a detection framework to explicitly extract and leverage motion features. P2D predicts object information in the current frame using solely past frames to learn temporal motion features. We then introduce a novel temporal feature aggregation method that attentively exploits Bird's-Eye-View (BEV) features based on predicted object information, resulting in accurate 3D object detection. Experimental results demonstrate that P2D improves mAP and NDS by 3.0% and 3.7% compared to the sequential image-based baseline, proving that incorporating a prediction scheme can significantly improve detection accuracy.

Getting Started

Model Zoo

Model Backbone Weight mAP NDS
P2D ResNet50 link 36.0 47.4
P2D ConvNext-B link 46.0 55.1

Citation

@inproceedings{kim2023predict,
  title={Predict to Detect: Prediction-guided 3D Object Detection using Sequential Images},
  author={Sanmin Kim, Youngseok Kim, In-Jae Lee, and Dongsuk Kum},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={18057--18066},
  year={2023}
}

Acknowledgement

About

[ICCV 2023] Predict to Detect: Prediction-guided 3D Object Detection using Sequential Images

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages