Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
sayaboinajagadeeshwar authored May 23, 2020
0 parents commit 1116157
Show file tree
Hide file tree
Showing 7 changed files with 454 additions and 0 deletions.
7 changes: 7 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
.vscode
.idea
/videos
/output
*/__pycache__
*/.pyc
/python-env/
64 changes: 64 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
### PEOPLE COUNTER

This is investigation prototype of application, which main goal is to count number of people that enter and leave some area

Started 28.08.2018

### Local setup
*Create a local virtual python environment*
```bash
pip3 install virtualenv

virtualenv -p python3 python-env

source python-env/bin/activate
```

*Install the dependencies for the project*

```bash
pip install -r requirements.txt
```

**For windows anaconda can be used to ease installation**

### Project tree
```
.
├── classes.py
├── people_counter.py people counting algorithm
├── pl.py statistic visualisation
├── streaming streaming ivestigation
│   ├── Stream.py
│   ├── ffserver.py
├── tracking centroid tracking algorithm
│   ├── centroidtracker.py
│   ├── trackableobject.py
│   └── Tracking.py
├── README.md
├── mobilenet_ssd Caffe deep learning model files
│   ├── MobileNetSSD_deploy.caffemodel
│   └── MobileNetSSD_deploy.prototxt
├── requirements.txt dependencies
└── start.py app entry point
```

### Briefly about the algorithm
- get frame
- every *n* frame:
- convert the frame to a blob and pass the blob through the network and obtain the detections
- loop over detections and filter out weak and useless detections
- construct a dlib rectangle object and then start the dlib correlation tracker. Add the tracker to our list of trackers
- else:
- update the tracker and grab the updated position
- use the centroid tracker to associate the (1) old object centroids with (2) the newly computed object centroids
- loop over the tracked objects:
- check to see if a trackable object exists for the current object ID. Create if there is no existing trackable object
- otherwise determine utilize it to determine direction and count
- draw
### HOW TO

```bash
python start.py
```

21 changes: 21 additions & 0 deletions classes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
CLASSES = ["background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"]
284 changes: 284 additions & 0 deletions people_counter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,284 @@
# import the necessary packages
from tracking.centroidtracker import CentroidTracker
from tracking.trackableobject import TrackableObject
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2
import classes as classes


def counter(filenameOpen, filenameSave):
# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--input", type=str,
# help="path to optional input video file")
# ap.add_argument("-o", "--output", type=str,
# help="path to optional output video file")
# args = vars(ap.parse_args())

defaultConfidence = 0.4 # минимальный процент вероятности обнаружения
defaultSkipFrames = 30 # пропущенное количество кадров между обнаружениями
W = None # размеры кадра
H = None
writer = None

# загрузка модели
net = cv2.dnn.readNetFromCaffe("mobilenet_ssd/MobileNetSSD_deploy.prototxt",
"mobilenet_ssd/MobileNetSSD_deploy.caffemodel")

# if not args.get("input", False): # если отсутствует путь к видео -- захватить видео с веб-камеры
# print("[INFO] starting video stream...")
# vs = VideoStream(src=0).start()
# time.sleep(2.0)

# else: # в противном случае взять видеофайл
print("[INFO] opening video file...")
vs = cv2.VideoCapture(filenameOpen)

# instantiate our centroid tracker, then initialize a list to store
# each of our dlib correlation trackers, followed by a dictionary to
# map each unique object ID to a TrackableObject
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
trackers = []
trackableObjects = {}

# initialize the total number of frames processed thus far, along
# with the total number of objects that have moved either up or down
totalFrames = 0
totalDown = 0
totalUp = 0

# start the frames per second throughput estimator
fps = FPS().start()

stat = {}

# loop over frames from the video stream
while True:
# grab the next frame and handle if we are reading from either
# VideoCapture or VideoStream
ok, frame = vs.read()
# frame = frame[1] if args.get("input", False) else frame

# if we are viewing a video and we did not grab a frame then we
# have reached the end of the video
if filenameOpen is not None and frame is None:
break

# resize the frame to have a maximum width of 500 pixels (the
# less data we have, the faster we can process it), then convert
# the frame from BGR to RGB for dlib

frame = cv2.resize(frame, (640, 480))

rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

# if the frame dimensions are empty, set them
if W is None or H is None:
(H, W) = frame.shape[:2]

# if we are supposed to be writing a video to disk, initialize
# the writer
if filenameSave is not None and writer is None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(filenameSave, fourcc, 30, (W, H), True)

# initialize the current status along with our list of bounding
# box rectangles returned by either (1) our object detector or
# (2) the correlation trackers
status = "Waiting"
rects = []

# check to see if we should run a more computationally expensive
# object detection method to aid our tracker

videotime = vs.get(cv2.CAP_PROP_POS_MSEC) / 1000
summ = totalUp + totalDown

if totalFrames % 50 == 0:
stat["{:.4s}".format(str(videotime))] = str(summ)
# print("{:.4s}".format(str(videotime)) + " people: " + str(summ))

if totalFrames % defaultSkipFrames == 0:
# set the status and initialize our new set of object trackers
status = "Detecting"
trackers = []

# convert the frame to a blob and pass the blob through the
# network and obtain the detections
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
net.setInput(blob)
detections = net.forward()

# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated
# with the prediction
confidence = detections[0, 0, i, 2]

# filter out weak detections by requiring a minimum
# confidence
if confidence > defaultConfidence:
# extract the index of the class label from the
# detections list
idx = int(detections[0, 0, i, 1])

# if the class label is not a person, ignore it
if classes.CLASSES[idx] != "person":
continue

# compute the (x, y)-coordinates of the bounding box
# for the object
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = box.astype("int")

# construct a dlib rectangle object from the bounding
# box coordinates and then start the dlib correlation
# tracker
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(startX, startY, endX, endY)
tracker.start_track(rgb, rect)

# add the tracker to our list of trackers so we can
# utilize it during skip frames
trackers.append(tracker)

# otherwise, we should utilize our object *trackers* rather than
# object *detectors* to obtain a higher frame processing throughput
else:
# loop over the trackers
for tracker in trackers:
# set the status of our system to be 'tracking' rather
# than 'waiting' or 'detecting'
status = "Tracking"

# update the tracker and grab the updated position
tracker.update(rgb)
pos = tracker.get_position()

# unpack the position object
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())

# add the bounding box coordinates to the rectangles list
rects.append((startX, startY, endX, endY))

# draw a horizontal line in the center of the frame -- once an
# object crosses this line we will determine whether they were
# moving 'up' or 'down'

# cv2.line(frame, (0, 0), (W, H), (0, 255, 255), 2)
cv2.line(frame, (0, H // 2), (W, H // 2), (0, 255, 255), 2)

# use the centroid tracker to associate the (1) old object
# centroids with (2) the newly computed object centroids
objects = ct.update(rects)

# loop over the tracked objects
for (objectID, centroid) in objects.items():
# check to see if a trackable object exists for the current
# object ID
to = trackableObjects.get(objectID, None)

# if there is no existing trackable object, create one
if to is None:
to = TrackableObject(objectID, centroid)

# otherwise, there is a trackable object so we can utilize it
# to determine direction
else:
# the difference between the y-coordinate of the *current*
# centroid and the mean of *previous* centroids will tell
# us in which direction the object is moving (negative for
# 'up' and positive for 'down')
y = [c[1] for c in to.centroids]
direction = centroid[1] - np.mean(y)
to.centroids.append(centroid)

# check to see if the object has been counted or not
if not to.counted:
# if the direction is negative (indicating the object
# is moving up) AND the centroid is above the center
# line, count the object
if direction < 0 and centroid[1] < H // 2:
totalUp += 1
to.counted = True

# if the direction is positive (indicating the object
# is moving down) AND the centroid is below the
# center line, count the object
elif direction > 0 and centroid[1] > H // 2:
totalDown += 1
to.counted = True

# store the trackable object in our dictionary
trackableObjects[objectID] = to

# draw both the ID of the object and the centroid of the
# object on the output frame
text = "ID {}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)

# construct a tuple of information we will be displaying on the
# frame
info = [
("Up", totalUp),
("Down", totalDown),
("Time", "{:.4f}".format(videotime))
]

# loop over the info tuples and draw them on our frame
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, H - ((i * 20) + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

# check to see if we should write the frame to disk
if writer is not None:
writer.write(frame)

# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF

# if the `q` key was pressed, break from the loop
if key == ord("q"):
break

# increment the total number of frames processed thus far and
# then update the FPS counter
totalFrames += 1
fps.update()

# stop the timer and display FPS information
fps.stop()

# check to see if we need to release the video writer pointer
if writer is not None:
writer.release()

# if we are not using a video file, stop the camera video stream
if not filenameOpen:
vs.stop()

# otherwise, release the video file pointer
else:
vs.release()

# close any open windows
cv2.destroyAllWindows()

# print(stat)

return info, stat
# if __name__ == "__main__":
# counter()
Loading

0 comments on commit 1116157

Please sign in to comment.