Skip to content

sbalk/FaceForensics

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FaceForensics++: Learning to Detect Manipulated Facial Images

Header

Overview

FaceForensics++ is a forensics dataset consisting of 1000 original video sequences that have been manipulated with three automated face manipulation methods: Deepfakes, Face2Face and FaceSwap. The data has been sourced from 977 youtube videos and all videos contain a trackable mostly frontal face without occlusions which enables automated tampering methods to generate realistic forgeries. As we provide binary masks the data can be used for image and video classification as well as segmentation. In addition, we provide 1000 Deepfakes models to generate and augment new data.

For more information, please consult our updated paper.

We are offering an automated benchmark for facial manipulation detection on the presenece of compression based on our manipulation methods. If you are interested to test your approach on unseen data, check it out! For more information, please consult our paper.

Access

If you would like to download the FaceForensics++ dataset, please fill out this google form and, once accepted, we will send you the link to our download script.

If you have not received a response within a week, it is likely that your email is bouncing - please check this before sending repeat requests.

Once, you obtain the download link, please head to the download section. You can also find details about the generation of the dataset there.

Original FaceForensics

You can view the original FaceForensics github here. Any request will also contain the download link to the original version of our dataset.

Citation

If you use the FaceForensics++ data or code please cite:

@article{roessler2019faceforensics++,
	author = {Andreas R\"ossler and Davide Cozzolino and Luisa Verdoliva and Christian Riess and Justus Thies and Matthias Nie{\ss}ner},
	title = {Face{F}orensics++: Learning to Detect Manipulated Facial Images},
	journal={arXiv},
	year={2019}
}

Help

If you have any questions, please contact us at [email protected].

Video

Please view our youtube video here.

youtubev_video

Changelog

06.04.2019: Updated sample and added benchmark

02.04.2019: Updated our arxiv paper, switched to google forms, release of dataset generation methods and added a classification sample

25.01.2019: Release of FaceForensics++

License

The data is released under the FaceForensics Terms of Use, and the code is released under the MIT license.

Copyright (c) 2019

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Shell 0.9%