Skip to content

Commit

Permalink
Add setup for TPU CI to run every hour. (huggingface#6219)
Browse files Browse the repository at this point in the history
* Add setup for TPU CI to run every hour.

* Re-organize config.yml

Co-authored-by: Lysandre <[email protected]>
  • Loading branch information
zcain117 and LysandreJik authored Aug 7, 2020
1 parent 6695450 commit 1b8a7ff
Show file tree
Hide file tree
Showing 6 changed files with 253 additions and 15 deletions.
107 changes: 105 additions & 2 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
@@ -1,4 +1,67 @@
version: 2
version: 2.1
orbs:
gcp-gke: circleci/[email protected]
go: circleci/[email protected]

# TPU REFERENCES
references:
checkout_ml_testing: &checkout_ml_testing
run:
name: Checkout ml-testing-accelerators
command: |
git clone https://github.com/GoogleCloudPlatform/ml-testing-accelerators.git
cd ml-testing-accelerators
git fetch origin 5e88ac24f631c27045e62f0e8d5dfcf34e425e25:stable
git checkout stable
build_push_docker: &build_push_docker
run:
name: Configure Docker
command: |
gcloud --quiet auth configure-docker
cd docker/transformers-pytorch-tpu
if [ -z "$CIRCLE_PR_NUMBER" ]; then docker build --tag "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" -f Dockerfile --build-arg "TEST_IMAGE=1"; else docker build --tag "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" -f Dockerfile --build-arg "TEST_IMAGE=1" --build-arg "GITHUB_REF=pull/$CIRCLE_PR_NUMBER/head" . ; fi
docker push "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID"
deploy_cluster: &deploy_cluster
run:
name: Deploy the job on the kubernetes cluster
command: |
go get github.com/google/go-jsonnet/cmd/jsonnet && \
export PATH=$PATH:$HOME/go/bin && \
kubectl create -f docker/transformers-pytorch-tpu/dataset.yaml || true && \
job_name=$(jsonnet -J ml-testing-accelerators/ docker/transformers-pytorch-tpu/bert-base-cased.jsonnet --ext-str image=$GCR_IMAGE_PATH --ext-str image-tag=$CIRCLE_WORKFLOW_JOB_ID | kubectl create -f -) && \
job_name=${job_name#job.batch/} && \
job_name=${job_name% created} && \
echo "Waiting on kubernetes job: $job_name" && \
i=0 && \
# 30 checks spaced 30s apart = 900s total.
max_checks=30 && \
status_code=2 && \
# Check on the job periodically. Set the status code depending on what
# happened to the job in Kubernetes. If we try max_checks times and
# still the job hasn't finished, give up and return the starting
# non-zero status code.
while [ $i -lt $max_checks ]; do ((i++)); if kubectl get jobs $job_name -o jsonpath='Failed:{.status.failed}' | grep "Failed:1"; then status_code=1 && break; elif kubectl get jobs $job_name -o jsonpath='Succeeded:{.status.succeeded}' | grep "Succeeded:1" ; then status_code=0 && break; else echo "Job not finished yet"; fi; sleep 30; done && \
echo "Done waiting. Job status code: $status_code" && \
# Allow time for logs to flush.
sleep 60 && \
echo "JOB_NAME: $job_name" && \
gcloud logging read "resource.type=k8s_container resource.labels.project_id=$GOOGLE_PROJECT_ID resource.labels.location=$GOOGLE_COMPUTE_ZONE resource.labels.cluster_name=$GKE_CLUSTER resource.labels.namespace_name=default resource.labels.pod_name:$job_name" --limit 10000000 --order asc --format 'value(textPayload)' --project=$GOOGLE_PROJECT_ID && \
echo "Done with log retrieval attempt." && \
gcloud container images delete "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" --force-delete-tags && \
exit $status_code
delete_gke_jobs: &delete_gke_jobs
run:
name: Delete GKE Jobs
command: |
# Match jobs whose age matches patterns like '1h' or '1d', i.e. any job
# that has been around longer than 1hr. First print all columns for
# matches, then execute the delete.
kubectl get job | awk 'match($4,/[0-9]+[dh]/) {print $0}'
kubectl delete job $(kubectl get job | awk 'match($4,/[0-9]+[dh]/) {print $1}')
jobs:
run_tests_torch_and_tf:
working_directory: ~/transformers
Expand Down Expand Up @@ -50,7 +113,6 @@ jobs:
- store_artifacts:
path: ~/transformers/output.txt
destination: test_output.txt

run_tests_tf:
working_directory: ~/transformers
docker:
Expand Down Expand Up @@ -193,6 +255,35 @@ jobs:
- checkout
- run: pip install requests
- run: python ./utils/link_tester.py

# TPU JOBS
run_examples_tpu:
docker:
- image: circleci/python:3.6
environment:
OMP_NUM_THREADS: 1
resource_class: xlarge
parallelism: 1
steps:
- checkout
- go/install
- *checkout_ml_testing
- gcp-gke/install
- gcp-gke/update-kubeconfig-with-credentials:
cluster: $GKE_CLUSTER
perform-login: true
- setup_remote_docker
- *build_push_docker
- *deploy_cluster
cleanup-gke-jobs:
docker:
- image: circleci/python:3.6
steps:
- gcp-gke/install
- gcp-gke/update-kubeconfig-with-credentials:
cluster: $GKE_CLUSTER
perform-login: true
- *delete_gke_jobs
workflow_filters: &workflow_filters
filters:
branches:
Expand All @@ -211,3 +302,15 @@ workflows:
- run_tests_tf
- build_doc
- deploy_doc: *workflow_filters
tpu_testing_jobs:
triggers:
- schedule:
# Set to run at the first minute of every hour.
cron: "0 8 * * *"
filters:
branches:
only:
- master
jobs:
- cleanup-gke-jobs
- run_examples_tpu
65 changes: 65 additions & 0 deletions docker/transformers-pytorch-tpu/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
FROM google/cloud-sdk:slim

# Build args.
ARG GITHUB_REF=refs/heads/master

# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below.
ENV PYTHON_VERSION=3.6

RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
cmake \
git \
curl \
ca-certificates

# Install conda and python.
# NOTE new Conda does not forward the exit status... https://github.com/conda/conda/issues/8385
RUN curl -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-4.7.12-Linux-x86_64.sh && \
chmod +x ~/miniconda.sh && \
~/miniconda.sh -b && \
rm ~/miniconda.sh

ENV PATH=/root/miniconda3/bin:$PATH

RUN conda create -y --name container python=$PYTHON_VERSION

# Run the rest of commands within the new conda env.
# Use absolute path to appease Codefactor.
SHELL ["/root/miniconda3/bin/conda", "run", "-n", "container", "/bin/bash", "-c"]
RUN conda install -y python=$PYTHON_VERSION mkl

RUN pip uninstall -y torch && \
# Python 3.7 wheels are available. Replace cp36-cp36m with cp37-cp37m
gsutil cp 'gs://tpu-pytorch/wheels/torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \
gsutil cp 'gs://tpu-pytorch/wheels/torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \
gsutil cp 'gs://tpu-pytorch/wheels/torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \
pip install 'torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
pip install 'torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
pip install 'torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
rm 'torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
rm 'torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
rm 'torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \
apt-get install -y libomp5

ENV LD_LIBRARY_PATH=root/miniconda3/envs/container/lib


# Install huggingface/transformers at the current PR, plus dependencies.
RUN git clone https://github.com/huggingface/transformers.git && \
cd transformers && \
git fetch origin $GITHUB_REF:CI && \
git checkout CI && \
cd .. && \
pip install ./transformers && \
pip install -r ./transformers/examples/requirements.txt && \
pip install pytest

RUN python -c "import torch_xla; print(torch_xla.__version__)"
RUN python -c "import transformers as trf; print(trf.__version__)"
RUN conda init bash
COPY docker-entrypoint.sh /usr/local/bin/
RUN chmod +x /usr/local/bin/docker-entrypoint.sh
ENTRYPOINT ["/usr/local/bin/docker-entrypoint.sh"]
CMD ["bash"]
38 changes: 38 additions & 0 deletions docker/transformers-pytorch-tpu/bert-base-cased.jsonnet
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
local base = import 'templates/base.libsonnet';
local tpus = import 'templates/tpus.libsonnet';
local utils = import "templates/utils.libsonnet";
local volumes = import "templates/volumes.libsonnet";

local bertBaseCased = base.BaseTest {
frameworkPrefix: "hf",
modelName: "bert-base-cased",
mode: "example",
configMaps: [],

timeout: 3600, # 1 hour, in seconds

image: std.extVar('image'),
imageTag: std.extVar('image-tag'),

tpuSettings+: {
softwareVersion: "pytorch-nightly",
},
accelerator: tpus.v3_8,

volumeMap+: {
datasets: volumes.PersistentVolumeSpec {
name: "huggingface-cluster-disk",
mountPath: "/datasets",
},
},
command: utils.scriptCommand(
|||
python -m pytest -s transformers/examples/test_xla_examples.py -v
test_exit_code=$?
echo "\nFinished running commands.\n"
test $test_exit_code -eq 0
|||
),
};

bertBaseCased.oneshotJob
32 changes: 32 additions & 0 deletions docker/transformers-pytorch-tpu/dataset.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
apiVersion: v1
kind: PersistentVolume
metadata:
name: huggingface-cluster-disk
spec:
storageClassName: ""
capacity:
storage: 500Gi
accessModes:
- ReadOnlyMany
claimRef:
namespace: default
name: huggingface-cluster-disk-claim
gcePersistentDisk:
pdName: huggingface-cluster-disk
fsType: ext4
readOnly: true
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: huggingface-cluster-disk-claim
spec:
# Specify "" as the storageClassName so it matches the PersistentVolume's StorageClass.
# A nil storageClassName value uses the default StorageClass. For details, see
# https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1
storageClassName: ""
accessModes:
- ReadOnlyMany
resources:
requests:
storage: 1Ki
8 changes: 8 additions & 0 deletions docker/transformers-pytorch-tpu/docker-entrypoint.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/bin/bash
source ~/.bashrc
echo "running docker-entrypoint.sh"
conda activate container
echo $KUBE_GOOGLE_CLOUD_TPU_ENDPOINTS
echo "printed TPU info"
export XRT_TPU_CONFIG="tpu_worker;0;${KUBE_GOOGLE_CLOUD_TPU_ENDPOINTS:7}"
exec "$@"#!/bin/bash
18 changes: 5 additions & 13 deletions examples/test_xla_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.


import argparse
import logging
import sys
import unittest
Expand All @@ -29,13 +28,6 @@
logger = logging.getLogger()


def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f


@require_torch_tpu
class TorchXLAExamplesTests(unittest.TestCase):
def test_run_glue(self):
Expand All @@ -47,13 +39,13 @@ def test_run_glue(self):
output_directory = "run_glue_output"

testargs = f"""
text-classification/run_glue.py
transformers/examples/text-classification/run_glue.py
--num_cores=8
text-classification/run_glue.py
transformers/examples/text-classification/run_glue.py
--do_train
--do_eval
--task_name=MRPC
--data_dir=../glue_data/MRPC
--data_dir=/datasets/glue_data/MRPC
--cache_dir=./cache_dir
--num_train_epochs=1
--max_seq_length=128
Expand Down Expand Up @@ -87,5 +79,5 @@ def test_run_glue(self):
# Assert that the model trains
self.assertGreaterEqual(value, 0.70)

# Assert that the script takes less than 100 seconds to make sure it doesn't hang.
self.assertLess(end - start, 100)
# Assert that the script takes less than 300 seconds to make sure it doesn't hang.
self.assertLess(end - start, 300)

0 comments on commit 1b8a7ff

Please sign in to comment.