Skip to content

sdan2/pytorch-cifar

This branch is up to date with kuangliu/pytorch-cifar:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

49b7aa9 · Feb 25, 2021

History

78 Commits
Nov 23, 2020
Nov 16, 2017
Feb 25, 2021
Nov 24, 2020
Jul 17, 2017

Repository files navigation

Train CIFAR10 with PyTorch

I'm playing with PyTorch on the CIFAR10 dataset.

Prerequisites

  • Python 3.6+
  • PyTorch 1.0+

Training

# Start training with: 
python main.py

# You can manually resume the training with: 
python main.py --resume --lr=0.01

Accuracy

Model Acc.
VGG16 92.64%
ResNet18 93.02%
ResNet50 93.62%
ResNet101 93.75%
RegNetX_200MF 94.24%
RegNetY_400MF 94.29%
MobileNetV2 94.43%
ResNeXt29(32x4d) 94.73%
ResNeXt29(2x64d) 94.82%
SimpleDLA 94.89%
DenseNet121 95.04%
PreActResNet18 95.11%
DPN92 95.16%
DLA 95.47%

About

95.47% on CIFAR10 with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%