Skip to content

Commit

Permalink
new file: coins.jpg
Browse files Browse the repository at this point in the history
	new file:   jpg_dft.py
	new file:   jpg_fft.py
	new file:   jpg_image_segmentation.py
  • Loading branch information
rkuo2000 committed Jun 21, 2018
1 parent 2fde70e commit 2a1762f
Show file tree
Hide file tree
Showing 4 changed files with 66 additions and 0 deletions.
Binary file added coins.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
16 changes: 16 additions & 0 deletions jpg_dft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('messi5.jpg',0)

dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
14 changes: 14 additions & 0 deletions jpg_fft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('messi5.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
36 changes: 36 additions & 0 deletions jpg_image_segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('coins.jpg')

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)

# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)

# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)

# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)

# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)

# Add one to all labels so that sure background is not 0, but 1
markers = markers+1

# Now, mark the region of unknown with zero
markers[unknown==255] = 0
markers = cv2.watershed(img,markers)
img[markers == -1] = [255,0,0]

plt.imshow(img)
plt.show()

0 comments on commit 2a1762f

Please sign in to comment.