Skip to content

sean207cc/tf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensorflow

Tensorflow Installation (on Windows)

  • Install Python 3.8 for Windows
  • Install nVidia CUDA 11.4 & CuDNN 8.x
  • Install Tensorflow
  • Download Examples git clone https://github.com/rkuo2000/tf
  • Go to directory cd tf

Tensorflow Sample Code

Intro - Tensorflow Session & Tensorboard

  • jupyter notebook to run intro.ipynb
  • run tensorboard : tensorboard --logdir=./
  • use Chrome to open http://localhost:6006

Basic Machine Learning

  • one neuron network : python easy_net.py
  • ten neurons network: python hidden_net.py

MNIST : Handwritten Number Recognition

  • plot data : python mnist_plotdata.py
  • DNN : python mnist.py
  • CNN : python mnist_cnn.py
  • load model to predict :
    python mnist_cnn_test.py (test data)
    python mnist_cnn_image.py (image file)
    python mnist_cnn_webcam.py (camera)

Fashion-MNIST : Fashion Wearing Recongition

  • CNN : python fashionmnist_cnn.py

Emotion Detection : Facial Expression Recognition

  • Download the FER-2013 dataset from here and unzip it under data folder.
  • change directory name from data/data to data/fer2013
  • To train the model, run python emotion_detection.py --mode train
  • To detect facial expression, run python emotion_detection.py --mode detect

Pneumonia Detection :

  • Train model: python pneumonia_cnn.py
  • Test model: python pneumonia_test.py

COVID-19

Coronavirus Genome Identification
COVID-19 Pneumonia Detection

Jetson Nano

Jetson Nano 2GB

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 69.9%
  • Python 30.0%
  • Shell 0.1%