“Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems”, A. Seko, J. Appl. Phys. 133, 011101 (2023)
@article{pypolymlp,
author = {Seko, Atsuto},
title = "{"Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems"}",
journal = {J. Appl. Phys.},
volume = {133},
number = {1},
pages = {011101},
year = {2023},
month = {01},
}
- python >= 3.9
- numpy != 2.0.*
- scipy
- pyyaml
- setuptools
- eigen3
- pybind11
- openmp (recommended)
[Optional]
- phonopy (if using phonon datasets and/or computing force constants)
- phono3py (if using phonon datasets and/or computing force constants)
- symfc (if computing force constants)
- sparse_dot_mkl (if computing force constants)
- spglib
- Install from conda-forge
Version | Last Update | Downloads | Platform | License |
---|---|---|---|---|
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge pypolymlp
- Install from PyPI
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install pypolymlp
Building C++ codes in pypolymlp may require a significant amount of time.
- Install from GitHub
git clone https://github.com/sekocha/pypolymlp.git
cd pypolymlp
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install . -vvv
Building C++ codes in pypolymlp may require a significant amount of time.
- Polynomial MLP development
- Property calculators
- Energy, forces on atoms, and stress tensor
- Force constants
- Elastic constants
- Equation of states
- Structural features (Polynomial invariants)
- Phonon properties, Quasi-harmonic approximation
- Local geometry optimization
- DFT structure generator
- Random atomic displacements with constant magnitude
- Random atomic displacements with sequential magnitudes and volume changes
- Random atomic displacements, cell expansion, and distortion
- Utilities
- Compression of vasprun.xml files
- Automatic division of DFT dataset
- Atomic energies
- Enumeration of optimal MLPs
- Estimation of computational costs
- Python API (MLP development)
- Python API (Property calculations)
- Energy, forces on atoms, and stress tensor
- Force constants
- Elastic constants
- Equation of states
- Structural features (Polynomial invariants)
- Phonon properties, Quasi-harmonic approximation
- Local geometry optimization
- Self-consistent phonon calculations