Skip to content

Fine-tuning BERT-based Pre-Trained Language Models for Vietnamese Sentiment Analysis

Notifications You must be signed in to change notification settings

semaahmed/bertvi-sentiment

 
 

Repository files navigation

BERTvi-sentiment

Official repository for paper "Fine-tuning BERT-based Pre-Trained Language Models for Vietnamese Sentiment Analysis".

Fine-tuning pipeline for Vietnamese sentiment analysis.

This project shows how BERT-based pre-trained language models improves performance of sentiment analysis in several Vietnamese benchmarks.

Requirements

  • PyTorch
  • Transformers
  • Fairseq
  • VnCoreNLP
  • FastBPE

To install all dependencies:

pip install -r requirements.txt

Download VnCoreNLP and word segmenter:

mkdir -p vncorenlp/models/wordsegmenter
wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/VnCoreNLP-1.1.1.jar
wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/vi-vocab
wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/wordsegmenter.rdr
mv VnCoreNLP-1.1.1.jar vncorenlp/ 
mv vi-vocab vncorenlp/models/wordsegmenter/
mv wordsegmenter.rdr vncorenlp/models/wordsegmenter/

Download PhoBERT pretrained models and puts it into pretrained directory:

  • PhoBERT-base:

      wget https://public.vinai.io/PhoBERT_base_transformers.tar.gz
      tar -xzvf PhoBERT_base_transformers.tar.gz
    
  • PhoBERT-large:

      wget https://public.vinai.io/PhoBERT_large_transformers.tar.gz
      tar -xzvf PhoBERT_large_transformers.tar.gz
    

Training

Define your own configuration variables in config file.

Variable Description Default
device Training device: cpu or cuda. cuda
dataset Which dataset will be used for training phrase: vlsp2016, aivivn, uit-vsfc. vlsp2016
encoder BERT encoder model: phobert, bert. phobert
epochs Number of training epochs. 15
batch_size Number of sample per batch. 8
feature_shape Encoder output feature shape. 768
num_classes Number of classes. 3
pivot (Optional) For splitting aivivn dataset. 0.8
max_length Max sequence length for encoder. 256
tokenizer_type Sentence tokenizer for BERT encoder: phobert, bert. phobert
num_workers Number of worker to produce dataset. 4
learning_rate Learning rate. 3e-5
momentum Optimizer momentum. 0.9
random_seed Random seed. 101
accumulation_steps Optimizer accumulation step. 5
pretrained (Optional) Pretrained model path. None

Train your model:

python train.py -f config/phobert_vlsp_2016.yaml

All outputs will be placed at outputs directory.

References

  • [1] Nguyen, Dat & Nguyen, Anh. (2020). PhoBERT: Pre-trained language models for Vietnamese. ArXiv, abs/2003.00744.
  • [2] Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune BERT for Text Classification? ArXiv, abs/1905.05583.
  • [3] Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientific Text. EMNLP/IJCNLP.
  • [4] Lee, J., Tang, R., & Lin, J. (2019). What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning. ArXiv, abs/1911.03090.
  • [5] Merchant, A., Rahimtoroghi, E., Pavlick, E., & Tenney, I. (2020). What Happens To BERT Embeddings During Fine-tuning? ArXiv, abs/2004.14448.
  • [6] Semnani, S.J. (2019). BERT-A : Fine-tuning BERT with Adapters and Data Augmentation.
  • [7] Hao, Y., Dong, L., Wei, F., & Xu, K. (2019). Visualizing and Understanding the Effectiveness of BERT. ArXiv, abs/1908.05620.
  • [8] Zhang, T., Wu, F., Katiyar, A., Weinberger, K.Q., & Artzi, Y. (2020). Revisiting Few-sample BERT Fine-tuning. ArXiv, abs/2006.05987.
  • [9] PhoBERT Sentiment Classification. https://github.com/suicao/PhoBert-Sentiment-Classification

About

Fine-tuning BERT-based Pre-Trained Language Models for Vietnamese Sentiment Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%