forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds Student's t distribution to tf.contrib.distributions
Leaving out the cdf for now, as it requires incomplete beta, not available in eigen at the moment. Change: 122673237
- Loading branch information
1 parent
996f797
commit 0eb9af8
Showing
4 changed files
with
618 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
321 changes: 321 additions & 0 deletions
321
tensorflow/contrib/distributions/python/kernel_tests/student_t_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# Copyright 2016 Google Inc. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tests for Student t distribution.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import math | ||
|
||
import numpy as np | ||
from scipy import stats | ||
import tensorflow as tf | ||
|
||
|
||
class StudentTTest(tf.test.TestCase): | ||
|
||
def testStudentPDFAndLogPDF(self): | ||
with tf.Session(): | ||
batch_size = 6 | ||
df = tf.constant([3.0] * batch_size) | ||
mu = tf.constant([7.0] * batch_size) | ||
sigma = tf.constant([8.0] * batch_size) | ||
df_v = 3.0 | ||
mu_v = 7.0 | ||
sigma_v = 8.0 | ||
t = np.array([-2.5, 2.5, 8.0, 0.0, -1.0, 2.0], dtype=np.float32) | ||
student = tf.contrib.distributions.StudentT(df, mu=mu, sigma=sigma) | ||
|
||
log_pdf = student.log_pdf(t) | ||
self.assertEquals(log_pdf.get_shape(), (6,)) | ||
log_pdf_values = log_pdf.eval() | ||
pdf = student.pdf(t) | ||
self.assertEquals(pdf.get_shape(), (6,)) | ||
pdf_values = pdf.eval() | ||
|
||
expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v) | ||
expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v) | ||
self.assertAllClose(expected_log_pdf, log_pdf_values) | ||
self.assertAllClose(np.log(expected_pdf), log_pdf_values) | ||
self.assertAllClose(expected_pdf, pdf_values) | ||
self.assertAllClose(np.exp(expected_log_pdf), pdf_values) | ||
|
||
def testStudentLogPDFMultidimensional(self): | ||
with tf.Session(): | ||
batch_size = 6 | ||
df = tf.constant([[1.5, 7.2]] * batch_size) | ||
mu = tf.constant([[3.0, -3.0]] * batch_size) | ||
sigma = tf.constant([[math.sqrt(10.0), math.sqrt(15.0)]] * batch_size) | ||
df_v = np.array([1.5, 7.2]) | ||
mu_v = np.array([3.0, -3.0]) | ||
sigma_v = np.array([np.sqrt(10.0), np.sqrt(15.0)]) | ||
t = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T | ||
student = tf.contrib.distributions.StudentT(df, mu=mu, sigma=sigma) | ||
log_pdf = student.log_pdf(t) | ||
log_pdf_values = log_pdf.eval() | ||
self.assertEqual(log_pdf.get_shape(), (6, 2)) | ||
pdf = student.pdf(t) | ||
pdf_values = pdf.eval() | ||
self.assertEqual(pdf.get_shape(), (6, 2)) | ||
expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v) | ||
expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v) | ||
self.assertAllClose(expected_log_pdf, log_pdf_values) | ||
self.assertAllClose(np.log(expected_pdf), log_pdf_values) | ||
self.assertAllClose(expected_pdf, pdf_values) | ||
self.assertAllClose(np.exp(expected_log_pdf), pdf_values) | ||
|
||
def testStudentEntropy(self): | ||
df_v = np.array([[2., 3., 7.]]) # 1x3 | ||
mu_v = np.array([[1., -1, 0]]) # 1x3 | ||
sigma_v = np.array([[1., 2., 3.]]).T # transposed => 3x1 | ||
with tf.Session(): | ||
student = tf.contrib.distributions.StudentT(df=df_v, | ||
mu=mu_v, | ||
sigma=sigma_v) | ||
ent = student.entropy() | ||
ent_values = ent.eval() | ||
|
||
# Help scipy broadcast to 3x3 | ||
ones = np.array([[1, 1, 1]]) | ||
sigma_bc = sigma_v * ones | ||
mu_bc = ones.T * mu_v | ||
df_bc = ones.T * df_v | ||
expected_entropy = stats.t.entropy( | ||
np.reshape(df_bc, [-1]), | ||
loc=np.reshape(mu_bc, [-1]), | ||
scale=np.reshape(sigma_bc, [-1])) | ||
expected_entropy = np.reshape(expected_entropy, df_bc.shape) | ||
self.assertAllClose(expected_entropy, ent_values) | ||
|
||
def testStudentSample(self): | ||
with tf.Session(): | ||
df = tf.constant(4.0) | ||
mu = tf.constant(3.0) | ||
sigma = tf.constant(math.sqrt(10.0)) | ||
df_v = 4.0 | ||
mu_v = 3.0 | ||
sigma_v = np.sqrt(10.0) | ||
n = tf.constant(100000) | ||
student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma) | ||
samples = student.sample(n, seed=137) | ||
sample_values = samples.eval() | ||
n = 100000 | ||
self.assertEqual(sample_values.shape, (n,)) | ||
self.assertAllClose(sample_values.mean(), mu_v, atol=1e-2) | ||
self.assertAllClose(sample_values.var(), | ||
sigma_v**2 * df_v / (df_v - 2), | ||
atol=.25) | ||
self._checkKLApprox(df_v, mu_v, sigma_v, sample_values) | ||
|
||
def testStudentSampleMultiDimensional(self): | ||
with tf.Session(): | ||
batch_size = 7 | ||
df = tf.constant([[3.0, 7.0]] * batch_size) | ||
mu = tf.constant([[3.0, -3.0]] * batch_size) | ||
sigma = tf.constant([[math.sqrt(10.0), math.sqrt(15.0)]] * batch_size) | ||
df_v = [3.0, 7.0] | ||
mu_v = [3.0, -3.0] | ||
sigma_v = [np.sqrt(10.0), np.sqrt(15.0)] | ||
n = tf.constant(100000) | ||
student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma) | ||
samples = student.sample(n, seed=137) | ||
sample_values = samples.eval() | ||
self.assertEqual(samples.get_shape(), (100000, batch_size, 2)) | ||
self.assertAllClose(sample_values[:, 0, 0].mean(), mu_v[0], atol=.15) | ||
self.assertAllClose(sample_values[:, 0, 0].var(), | ||
sigma_v[0]**2 * df_v[0] / (df_v[0] - 2), | ||
atol=1) | ||
self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 0]) | ||
self.assertAllClose(sample_values[:, 0, 1].mean(), mu_v[1], atol=.01) | ||
self.assertAllClose(sample_values[:, 0, 1].var(), | ||
sigma_v[1]**2 * df_v[1] / (df_v[1] - 2), | ||
atol=.25) | ||
self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 1]) | ||
|
||
def _checkKLApprox(self, df, mu, sigma, samples): | ||
n = samples.size | ||
np.random.seed(137) | ||
sample_scipy = stats.t.rvs(df, loc=mu, scale=sigma, size=n) | ||
covg = 0.99 | ||
r = stats.t.interval(covg, df, loc=mu, scale=sigma) | ||
bins = 100 | ||
hist, _ = np.histogram(samples, bins=bins, range=r) | ||
hist_scipy, _ = np.histogram(sample_scipy, bins=bins, range=r) | ||
self.assertGreater(hist.sum(), n * (covg - .01)) | ||
self.assertGreater(hist_scipy.sum(), n * (covg - .01)) | ||
hist_min1 = hist + 1. # put at least one item in each bucket | ||
hist_norm = hist_min1 / hist_min1.sum() | ||
hist_scipy_min1 = hist_scipy + 1. # put at least one item in each bucket | ||
hist_scipy_norm = hist_scipy_min1 / hist_scipy_min1.sum() | ||
kl_appx = np.sum(np.log(hist_scipy_norm / hist_norm) * hist_scipy_norm) | ||
self.assertLess(kl_appx, 1) | ||
|
||
def testBroadcastingParams(self): | ||
|
||
def _check(student): | ||
self.assertEqual(student.mean.get_shape(), (3,)) | ||
self.assertEqual(student.variance.get_shape(), (3,)) | ||
self.assertEqual(student.entropy().get_shape(), (3,)) | ||
self.assertEqual(student.log_pdf(2.).get_shape(), (3,)) | ||
self.assertEqual(student.pdf(2.).get_shape(), (3,)) | ||
self.assertEqual(student.sample(37).get_shape(), (37, 3,)) | ||
|
||
_check(tf.contrib.distributions.StudentT(df=[2., 3., 4.,], mu=2., sigma=1.)) | ||
_check(tf.contrib.distributions.StudentT(df=7., mu=[2., 3., 4.,], sigma=1.)) | ||
_check(tf.contrib.distributions.StudentT(df=7., mu=3., sigma=[2., 3., 4.,])) | ||
|
||
def testBroadcastingPdfArgs(self): | ||
|
||
def _assert_shape(student, arg, shape): | ||
self.assertEqual(student.log_pdf(arg).get_shape(), shape) | ||
self.assertEqual(student.pdf(arg).get_shape(), shape) | ||
|
||
def _check(student): | ||
_assert_shape(student, 2., (3,)) | ||
xs = np.array([2., 3., 4.], dtype=np.float32) | ||
_assert_shape(student, xs, (3,)) | ||
xs = np.array([xs]) | ||
_assert_shape(student, xs, (1, 3)) | ||
xs = xs.T | ||
_assert_shape(student, xs, (3, 3)) | ||
|
||
_check(tf.contrib.distributions.StudentT(df=[2., 3., 4.,], mu=2., sigma=1.)) | ||
_check(tf.contrib.distributions.StudentT(df=7., mu=[2., 3., 4.,], sigma=1.)) | ||
_check(tf.contrib.distributions.StudentT(df=7., mu=3., sigma=[2., 3., 4.,])) | ||
|
||
def _check2d(student): | ||
_assert_shape(student, 2., (1, 3)) | ||
xs = np.array([2., 3., 4.], dtype=np.float32) | ||
_assert_shape(student, xs, (1, 3)) | ||
xs = np.array([xs]) | ||
_assert_shape(student, xs, (1, 3)) | ||
xs = xs.T | ||
_assert_shape(student, xs, (3, 3)) | ||
|
||
_check2d(tf.contrib.distributions.StudentT( | ||
df=[[2., 3., 4.,]], mu=2., sigma=1.)) | ||
_check2d(tf.contrib.distributions.StudentT( | ||
df=7., mu=[[2., 3., 4.,]], sigma=1.)) | ||
_check2d(tf.contrib.distributions.StudentT( | ||
df=7., mu=3., sigma=[[2., 3., 4.,]])) | ||
|
||
def _check2d_rows(student): | ||
_assert_shape(student, 2., (3, 1)) | ||
xs = np.array([2., 3., 4.], dtype=np.float32) # (3,) | ||
_assert_shape(student, xs, (3, 3)) | ||
xs = np.array([xs]) # (1,3) | ||
_assert_shape(student, xs, (3, 3)) | ||
xs = xs.T # (3,1) | ||
_assert_shape(student, xs, (3, 1)) | ||
|
||
_check2d_rows(tf.contrib.distributions.StudentT( | ||
df=[[2.], [3.], [4.]], mu=2., sigma=1.)) | ||
_check2d_rows(tf.contrib.distributions.StudentT( | ||
df=7., mu=[[2.], [3.], [4.]], sigma=1.)) | ||
_check2d_rows(tf.contrib.distributions.StudentT( | ||
df=7., mu=3., sigma=[[2.], [3.], [4.]])) | ||
|
||
def testMeanVar(self): | ||
with tf.Session(): | ||
student = tf.contrib.distributions.StudentT( | ||
df=[1., 2., 3., 5., 7.], | ||
mu=np.exp(1, dtype=np.float32), | ||
sigma=[5., 4., 3., 2., 1.]) | ||
# Test broadcast of mu across shape of df/sigma | ||
mean = student.mean.eval() | ||
self.assertAllClose([np.exp(1, dtype=np.float32)] * 5, mean) | ||
var = student.variance.eval() | ||
# loc does not effect variance, so we use 0. | ||
self.assertAllClose([stats.t.var(1., loc=0., scale=5.), | ||
stats.t.var(2., loc=0., scale=4.), | ||
stats.t.var(3., loc=0., scale=3.), | ||
stats.t.var(5., loc=0., scale=2.), | ||
stats.t.var(7., loc=0., scale=1.)], var) | ||
|
||
def testPdfOfSample(self): | ||
with tf.Session() as sess: | ||
student = tf.contrib.distributions.StudentT(df=3., mu=np.pi, sigma=1.) | ||
num = 20000 | ||
samples = student.sample(num, seed=137) | ||
pdfs = student.pdf(samples) | ||
mean = student.mean | ||
mean_pdf = student.pdf(student.mean) | ||
sample_vals, pdf_vals, mean_val, mean_pdf_val = sess.run( | ||
[samples, pdfs, student.mean, mean_pdf]) | ||
self.assertEqual(samples.get_shape(), (num,)) | ||
self.assertEqual(pdfs.get_shape(), (num,)) | ||
self.assertEqual(mean.get_shape(), ()) | ||
self.assertNear(np.pi, np.mean(sample_vals), err=0.02) | ||
self.assertNear(np.pi, mean_val, err=1e-6) | ||
self.assertNear(stats.t.pdf(np.pi, 3., loc=np.pi), mean_pdf_val, err=1e-6) | ||
# Verify integral over sample*pdf ~= 1. | ||
self._assertIntegral(sample_vals, pdf_vals) | ||
|
||
def testPdfOfSampleMultiDims(self): | ||
with tf.Session() as sess: | ||
student = tf.contrib.distributions.StudentT(df=[7., 11.], | ||
mu=[[5.], [6.]], | ||
sigma=3.) | ||
num = 50000 | ||
samples = student.sample(num, seed=137) | ||
pdfs = student.pdf(samples) | ||
sample_vals, pdf_vals = sess.run([samples, pdfs]) | ||
self.assertEqual(samples.get_shape(), (num, 2, 2)) | ||
self.assertEqual(pdfs.get_shape(), (num, 2, 2)) | ||
self.assertNear(5., np.mean(sample_vals[:, 0, :]), err=.03) | ||
self.assertNear(6., np.mean(sample_vals[:, 1, :]), err=.03) | ||
self.assertNear(stats.t.var(7., loc=0., scale=3.), # loc d.n. effect var | ||
np.var(sample_vals[:, :, 0]), | ||
err=.25) | ||
self.assertNear(stats.t.var(11., loc=0., scale=3.), # loc d.n. effect var | ||
np.var(sample_vals[:, :, 1]), | ||
err=.25) | ||
self._assertIntegral(sample_vals[:, 0, 0], pdf_vals[:, 0, 0], err=0.02) | ||
self._assertIntegral(sample_vals[:, 0, 1], pdf_vals[:, 0, 1], err=0.02) | ||
self._assertIntegral(sample_vals[:, 1, 0], pdf_vals[:, 1, 0], err=0.02) | ||
self._assertIntegral(sample_vals[:, 1, 1], pdf_vals[:, 1, 1], err=0.02) | ||
|
||
def _assertIntegral(self, sample_vals, pdf_vals, err=1e-3): | ||
s_p = zip(sample_vals, pdf_vals) | ||
prev = (sample_vals.min() - 1000, 0) | ||
total = 0 | ||
for k in sorted(s_p, key=lambda x: x[0]): | ||
pair_pdf = (k[1] + prev[1]) / 2 | ||
total += (k[0] - prev[0]) * pair_pdf | ||
prev = k | ||
self.assertNear(1., total, err=err) | ||
|
||
def testNegativeDofFails(self): | ||
with tf.Session(): | ||
student = tf.contrib.distributions.StudentT(df=[2, -5.], | ||
mu=0., | ||
sigma=1., | ||
name='S') | ||
with self.assertRaisesOpError(r'Condition x > 0 did not hold'): | ||
student.mean.eval() | ||
|
||
def testNegativeScaleFails(self): | ||
with tf.Session(): | ||
student = tf.contrib.distributions.StudentT(df=[5.], | ||
mu=0., | ||
sigma=[[3.], [-2.]], | ||
name='S') | ||
with self.assertRaisesOpError(r'Condition x > 0 did not hold'): | ||
student.mean.eval() | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.test.main() |
Oops, something went wrong.