Skip to content
/ RoMa Public
forked from Parskatt/RoMa

RoMa: Robust Dense Feature Matching

License

Notifications You must be signed in to change notification settings

sgk-000/RoMa

 
 

Repository files navigation

RoMa 🏛️:
Robust Dense Feature Matching

Johan Edstedt · Qiyu Sun · Georg Bökman · Mårten Wadenbäck · Michael Felsberg


example
RoMa is the robust dense feature matcher capable of estimating pixel-dense warps and reliable certainties for almost any image pair.

Setup/Install

In your python environment (tested on Linux python 3.10), run:

pip install -e .

Demo / How to Use

We provide two demos in the demos folder. Here's the gist of it:

from roma import roma_outdoor
roma_model = roma_outdoor(device=device)
# Match
warp, certainty = roma_model.match(imA_path, imB_path, device=device)
# Sample matches for estimation
matches, certainty = roma_model.sample(warp, certainty)
# Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1])
kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B)
# Find a fundamental matrix (or anything else of interest)
F, mask = cv2.findFundamentalMat(
    kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000
)

New: You can also match arbitrary keypoints with RoMa. A demo for this will be added soon.

Reproducing Results

The experiments in the paper are provided in the experiments folder.

Training

  1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets.
  2. Run the relevant experiment, e.g.,
torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py

Testing

python experiments/roma_outdoor.py --only_test --benchmark mega-1500

License

All our code except DINOv2 is MIT license. DINOv2 has an Apache 2 license DINOv2.

Acknowledgement

Our codebase builds on the code in DKM.

BibTeX

If you find our models useful, please consider citing our paper!

@article{edstedt2023roma,
title={{RoMa: Robust Dense Feature Matching}},
author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael},
journal={arXiv preprint arXiv:2305.15404},
year={2023}
}

About

RoMa: Robust Dense Feature Matching

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%