Skip to content

This repo contains material for the paper "Returning the Favour: When Regression Benefits from Probabilistic Causal Knowledge" ICML 2023 paper

Notifications You must be signed in to change notification settings

shahineb/collider-regression

Repository files navigation

Returning the Favour: When Regression Benefits from Probabilistic Causal Knowledge

Getting started

Running code for Simulation Example

  • Run from root directory
$ python run_mvn_experiment.py --cfg=config/runs/mvn_experiment.yaml --o=path/to/output/directory

Running code for Aerosol Radiative Forcing Example

  • Generate dataset (takes some time)
$ python generate_FaIR_data.py --cfg=config/generation/generate_FaIR.yaml --o=data/FaIR/ --val
  • Then run from root directory
$ python run_FaIR_experiment.py --cfg=config/runs/FaIR_experiment.yaml --o=path/to/output/directory

Reproducing paper results

Simulation Example

  • Run experiment with multiple initialisation seeds
$ source ./repro/repro_mvn_experiment_multi_seeds.sh
  • Run ablation study on number of training samples
$ source ./repro/repro_mvn_experiment_ntrain.sh
  • Run ablation study on number semi-supervised samples
$ source ./repro/repro_mvn_experiment_semiprop.sh
  • Run ablation study on number of dimensionality of X2
$ source ./repro/repro_mvn_experiment_d_X2.sh
  • Run experiment for random forest model

Go to notebooks/mvn-random-forest-models.ipynb

  • Visualise scores and generate plots

Go to notebooks/mvn-experiments-score-analysis.ipynb

Aerosol Radiative Forcing Example

  • Run experiment with multiple initialisation seeds
$ source ./repro/repro_FaIR_experiment_multi_seeds.sh
  • Run experiment for random forest model

Go to notebooks/FaIR-random-forest-models.ipynb

  • Visualise scores and generate table

Go to notebooks/FaIR-experiments-score-analysis.ipynb

Installation

Code implemented in Python 3.8.0

Setting up environment

Create and activate environment (with pyenv here)

$ pyenv virtualenv 3.8.0 venv
$ pyenv activate venv
$ (venv)

Install dependencies

$ (venv) pip install -r requirements.txt

References

@inproceedings{BouFawSej2023,
  title={{Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge}},
  author={Bouabid, Shahine and Fawkes, Jake and Sejdinovic, Dino},
  year={2023},
  journal={International Conference on Machine Learning (ICML)}
}

About

This repo contains material for the paper "Returning the Favour: When Regression Benefits from Probabilistic Causal Knowledge" ICML 2023 paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published