- Run from root directory
$ python run_mvn_experiment.py --cfg=config/runs/mvn_experiment.yaml --o=path/to/output/directory
- Generate dataset (takes some time)
$ python generate_FaIR_data.py --cfg=config/generation/generate_FaIR.yaml --o=data/FaIR/ --val
- Then run from root directory
$ python run_FaIR_experiment.py --cfg=config/runs/FaIR_experiment.yaml --o=path/to/output/directory
- Run experiment with multiple initialisation seeds
$ source ./repro/repro_mvn_experiment_multi_seeds.sh
- Run ablation study on number of training samples
$ source ./repro/repro_mvn_experiment_ntrain.sh
- Run ablation study on number semi-supervised samples
$ source ./repro/repro_mvn_experiment_semiprop.sh
- Run ablation study on number of dimensionality of X2
$ source ./repro/repro_mvn_experiment_d_X2.sh
- Run experiment for random forest model
Go to
notebooks/mvn-random-forest-models.ipynb
- Visualise scores and generate plots
Go to
notebooks/mvn-experiments-score-analysis.ipynb
- Run experiment with multiple initialisation seeds
$ source ./repro/repro_FaIR_experiment_multi_seeds.sh
- Run experiment for random forest model
Go to
notebooks/FaIR-random-forest-models.ipynb
- Visualise scores and generate table
Go to
notebooks/FaIR-experiments-score-analysis.ipynb
Code implemented in Python 3.8.0
Create and activate environment (with pyenv here)
$ pyenv virtualenv 3.8.0 venv
$ pyenv activate venv
$ (venv)
Install dependencies
$ (venv) pip install -r requirements.txt
@inproceedings{BouFawSej2023,
title={{Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge}},
author={Bouabid, Shahine and Fawkes, Jake and Sejdinovic, Dino},
year={2023},
journal={International Conference on Machine Learning (ICML)}
}