-
Notifications
You must be signed in to change notification settings - Fork 3
Matlab code implementing optimization algorithms presented in: Shai Bagon and Meirav Galun Large Scale Correlation Clustering Optimization (arXiv'2011).
License
shaibagon/large_scale_cc
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
=============================================== Large Scale Correlation Clustering Optimization =============================================== 1. Included packages -------------------- This distribution includes the following package QPBO - see below 2. Main functions ----------------- This package contains the following functions a_expand.m - implementation fo the expand&explore algorithm (Alg. 1 in Bagon&Galun2011) ab_swap.m - implementation fo the swap&explore algorithm (Alg. 2 in Bagon&Galun2011) AL_ICM.m - implementation fo the adaptive label ICM (Sec. 5.2 in Bagon&Galun2011) 3. Installation --------------- a. Download the tarball from the website and extract it to a local folder. b. Make sure your mex compiler under Matlab is well setup. If it does not, type (in Matlab) >> mex -setup and chhose either the visual studio compiler (for PC), or the gcc compiler (of Linux) c. Change directory in Matlab to the local folder in which you extracted the tarball d. Run: >> mexall This will compile several mex files required by our algorithms. e. If no error appear - you are good to go... 4. Documentation ---------------- Use (in Matlab) >> doc <function name> To see usage instructions and documentation for the various functions. 5. Usage example ---------------- Here is a small usage example (you may use this example to test your installation) You may copy-paste these commands into Matlab: % [gt w] = MakeSynthAff(100, [1 3 5 2], 10, .5, .1); % creates a synthetic sparse affinity matrix plotWl(w,gt); % plot the matrix ordered according to the ground-truth labeling el = a_expand(w); % CC optimization using expand&explore plotWl(w,el); % visualize the result sl = ab_swap(w); % CC optimization using swap&explore plotWl(w,sl); % visualize the result il = AL_ICM(w); % CC optimization using adaptive-label ICM plotWl(w,il); % visualize the result [CCEnergy(w,gt) CCEnergy(w,el) CCEnergy(w,sl) CCEnergy(w,il)], % output CC objective values for the different partitions. Another example can be found on SO: https://stackoverflow.com/a/66779296/1714410 6. Proper reference ------------------- Using this software in any academic work you must cite the following works in any resulting publication: S. Bagon and M. Galun. "Large Scale Correlation Clustering Optimization", arXiv'2011 C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. "Optimizing binary MRFs via extended roof duality", CVPR'2007 A. Included package: QPBO: Vladimir Kolmogorov's implementation ------------------------------------------ source files from: http://pub.ist.ac.at/~vnk/software.html
About
Matlab code implementing optimization algorithms presented in: Shai Bagon and Meirav Galun Large Scale Correlation Clustering Optimization (arXiv'2011).
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published