forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
=
committed
Jun 22, 2017
1 parent
7e35a83
commit 64d29ef
Showing
1 changed file
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
""" | ||
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis function. | ||
""" | ||
import numpy | ||
|
||
# List of input, output pairs | ||
train_data = (((5, 2, 3), 15), ((6, 5, 9), 25), | ||
((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41)) | ||
test_data = (((515, 22, 13), 555), ((61, 35, 49), 150)) | ||
parameter_vector = [2, 4, 1, 5] | ||
m = len(train_data) | ||
LEARNING_RATE = 0.009 | ||
|
||
|
||
def _error(example_no, data_set='train'): | ||
""" | ||
:param data_set: train data or test data | ||
:param example_no: example number whose error has to be checked | ||
:return: error in example pointed by example number. | ||
""" | ||
return calculate_hypothesis_value(example_no, data_set) - output(example_no, data_set) | ||
|
||
|
||
def _hypothesis_value(data_input_tuple): | ||
""" | ||
Calculates hypothesis function value for a given input | ||
:param data_input_tuple: Input tuple of a particular example | ||
:return: Value of hypothesis function at that point. | ||
Note that there is an 'biased input' whose value is fixed as 1. | ||
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it. | ||
So, we have to take care of it separately. Line 36 takes care of it. | ||
""" | ||
hyp_val = 0 | ||
for i in range(len(parameter_vector) - 1): | ||
hyp_val += data_input_tuple[i]*parameter_vector[i+1] | ||
hyp_val += parameter_vector[0] | ||
return hyp_val | ||
|
||
|
||
def output(example_no, data_set): | ||
""" | ||
:param data_set: test data or train data | ||
:param example_no: example whose output is to be fetched | ||
:return: output for that example | ||
""" | ||
if data_set == 'train': | ||
return train_data[example_no][1] | ||
elif data_set == 'test': | ||
return test_data[example_no][1] | ||
|
||
|
||
def calculate_hypothesis_value(example_no, data_set): | ||
""" | ||
Calculates hypothesis value for a given example | ||
:param data_set: test data or train_data | ||
:param example_no: example whose hypothesis value is to be calculated | ||
:return: hypothesis value for that example | ||
""" | ||
if data_set == "train": | ||
return _hypothesis_value(train_data[example_no][0]) | ||
elif data_set == "test": | ||
return _hypothesis_value(test_data[example_no][0]) | ||
|
||
|
||
def summation_of_cost_derivative(index, end=m): | ||
""" | ||
Calculates the sum of cost function derivative | ||
:param index: index wrt derivative is being calculated | ||
:param end: value where summation ends, default is m, number of examples | ||
:return: Returns the summation of cost derivative | ||
Note: If index is -1, this means we are calculating summation wrt to biased parameter. | ||
""" | ||
summation_value = 0 | ||
for i in range(end): | ||
if index == -1: | ||
summation_value += _error(i) | ||
else: | ||
summation_value += _error(i)*train_data[i][0][index] | ||
return summation_value | ||
|
||
|
||
def get_cost_derivative(index): | ||
""" | ||
:param index: index of the parameter vector wrt to derivative is to be calculated | ||
:return: derivative wrt to that index | ||
Note: If index is -1, this means we are calculating summation wrt to biased parameter. | ||
""" | ||
cost_derivative_value = summation_of_cost_derivative(index, m)/m | ||
return cost_derivative_value | ||
|
||
|
||
def run_gradient_descent(): | ||
global parameter_vector | ||
# Tune these values to set a tolerance value for predicted output | ||
absolute_error_limit = 0.000002 | ||
relative_error_limit = 0 | ||
j = 0 | ||
while True: | ||
j += 1 | ||
temp_parameter_vector = [0, 0, 0, 0] | ||
for i in range(0, len(parameter_vector)): | ||
cost_derivative = get_cost_derivative(i-1) | ||
temp_parameter_vector[i] = parameter_vector[i] - \ | ||
LEARNING_RATE*cost_derivative | ||
if numpy.allclose(parameter_vector, temp_parameter_vector, | ||
atol=absolute_error_limit, rtol=relative_error_limit): | ||
break | ||
parameter_vector = temp_parameter_vector | ||
print("Number of iterations:", j) | ||
|
||
|
||
def test_gradient_descent(): | ||
for i in range(len(test_data)): | ||
print("Actual output value:", output(i, 'test')) | ||
print("Hypothesis output:", calculate_hypothesis_value(i, 'test')) | ||
|
||
|
||
if __name__ == '__main__': | ||
run_gradient_descent() | ||
print("\nTesting gradient descent for a linear hypothesis function.\n") | ||
test_gradient_descent() |