Skip to content

Commit

Permalink
some more changes to remove redundant information
Browse files Browse the repository at this point in the history
  • Loading branch information
ajkl committed Jul 25, 2015
1 parent e353a2e commit cbdcbfc
Showing 1 changed file with 6 additions and 7 deletions.
13 changes: 6 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,17 +28,17 @@ What's New
----------

* XGBoost helps Chenglong Chen to win [Kaggle CrowdFlower Competition](https://www.kaggle.com/c/crowdflower-search-relevance)
- Check out the winning solution at [Highlight links](doc/README.md#highlight-links)
Check out the [winning solution](doc/README.md#highlight-links)
* XGBoost-0.4 release, see [CHANGES.md](CHANGES.md#xgboost-04)
* XGBoost helps three champion teams to win [WWW2015 Microsoft Malware Classification Challenge (BIG 2015)](http://www.kaggle.com/c/malware-classification/forums/t/13490/say-no-to-overfitting-approaches-sharing)
- Check out the winning solution at [Highlight links](doc/README.md#highlight-links)
Check out the [winning solution](doc/README.md#highlight-links)
* [External Memory Version](doc/external_memory.md)

Version
-------

* Current version xgboost-0.4, a lot improvment has been made since 0.3
- Change log in [CHANGES.md](CHANGES.md)
* Current version xgboost-0.4
- [Change log](CHANGES.md)
- This version is compatible with 0.3x versions

Features
Expand All @@ -48,8 +48,7 @@ Features
* Fast and memory efficient
- Can be more than 10 times faster than GBM in sklearn and R. [benchm-ml numbers](https://github.com/szilard/benchm-ml)
- Handles sparse matrices, support external memory
* Accurate prediction, and used extensively by data scientists and kagglers
- See [highlight links](https://github.com/dmlc/xgboost/blob/master/doc/README.md#highlight-links)
* Accurate prediction, and used extensively by data scientists and kagglers - [highlight links](https://github.com/dmlc/xgboost/blob/master/doc/README.md#highlight-links)
* Distributed and Portable
- The distributed version runs on Hadoop (YARN), MPI, SGE etc.
- Scales to billions of examples and beyond
Expand All @@ -75,5 +74,5 @@ License

XGBoost in Graphlab Create
--------------------------
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to do data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the Graphlab Create in http://graphlab.com/products/create/quick-start-guide.html
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to do data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the [Graphlab Create](http://graphlab.com/products/create/quick-start-guide.html)
* Nice blogpost by Jay Gu about using GLC boosted tree to solve kaggle bike sharing challenge: http://blog.graphlab.com/using-gradient-boosted-trees-to-predict-bike-sharing-demand

0 comments on commit cbdcbfc

Please sign in to comment.