This project provides the implementation of the paper "Physics-Informed Deep Reversible Regression Model for Temperature Field Reconstruction of Heat-Source Systems". [paper]
- Software
- python
- cuda
- pytorch
- Hardware
- GPU with at least 4GB
pip install -r requirements.txt
The data used in this work can be generated by data generator.
The training, test and visualization can be accessed by running main.py
file.
-
The data root is put in
data_root
in configuration fileconfig/config.yml
. -
Training
python main.py -m train
or
python main.py --mode=train
-
Test
python main.py -m test --test_check_num=21
or
python main.py --mode=test --test_check_num=21
or
python main.py -m=test -v=21
where variable
test_check_num
is the number of the saved model for test. -
Prediction visualization
python main.py -m plot --test_check_num=21
or
python main.py --mode=plot --test_check_num=21
or
python main.py -m=test -v=21
where variable
test_check_num
is the number of the saved model for plotting.
config
: the configuration filedata.yml
describes the setups of the layout domain and heat sourcesconfig.yml
describes other configurations
notebook
: the test file fornotebook
outputs
: the output results bytest
andplot
module. The test results is saved atoutputs/*.csv
and the plotting figures is saved atoutputs/predict_plot/
.src
: including surrogate model, training and testing files.test.py
: testing files.train.py
: training files.plot.py
: prediction visualization files.DeepRegression.py
: Model configurations.data
: data preprocessing and data loading files.models
: DNN surrogate models for the TFR-HSS task.loss
: physics-informed losses for training.utils
: useful tool function files.
docker
: start with docker.lightning_logs
: saved models.
One tiny example for training and testing can be accessed based on the following instruction.
- Some training and testing data are available at
samples/data
. - Based on the original configuration file, run
python main.py
directly for a quick experience of this tiny example.
If you find this work helpful for your research, please consider citing:
@article{gong2021,
Author = {Zhiqiang Gong and Weien Zhou and Wei Peng and Wen Yao},
Title = {Physics-Informed Deep Reversible Regression Model for Temperature Field Reconstruction of Heat-Source Systems},
Journal = {arXiv preprint arXiv:2106.11929},
Year = {2021}
}