Skip to content

shenhsinyu/hw4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

image super resolution

enviornment

  • tensorflow
  • ubuntu 18.04

data

  • create a dir name data and put the training data in here.
  • If you want to generate more data for data augmentation, run python3 augmentation.py --dataset="your dataset dir" --augment_level="you can choose 4/8".

train

  • First, go to arg.py to set the parameter you want, like scale, lr, number of filter... and start training.

inference

  • After training, you must use the same parameter to test the model, run python3 sr.py --file="your image path" and you can get upscale image for the low resolution image in the output dir.
  • It will genertate 6 images for each lr image, the image named result is the upscale one.

result

low resolution image

image

high resolution image (x3)

image

reference

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages