forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[DGL-LifeSci] WLN for Reaction Prediction (dmlc#1530)
* Update * Update * Update * Update * Update * Fix bug * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * UPdate * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Udpate * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Finalize
- Loading branch information
Showing
18 changed files
with
3,185 additions
and
386 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
75 changes: 75 additions & 0 deletions
75
apps/life_sci/examples/reaction_prediction/rexgen_direct/candidate_ranking_eval.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import torch | ||
|
||
from dgllife.data import USPTORank, WLNRankDataset | ||
from dgllife.model import WLNReactionRanking, load_pretrained | ||
from torch.utils.data import DataLoader | ||
|
||
from configure import candidate_ranking_config, reaction_center_config | ||
from utils import mkdir_p, prepare_reaction_center, collate_rank_eval, candidate_ranking_eval | ||
|
||
def main(args, path_to_candidate_bonds): | ||
if args['test_path'] is None: | ||
test_set = USPTORank( | ||
subset='test', candidate_bond_path=path_to_candidate_bonds['test'], | ||
max_num_change_combos_per_reaction=args['max_num_change_combos_per_reaction_eval'], | ||
num_processes=args['num_processes']) | ||
else: | ||
test_set = WLNRankDataset( | ||
raw_file_path=args['test_path'], | ||
candidate_bond_path=path_to_candidate_bonds['test'], mode='test', | ||
max_num_change_combos_per_reaction=args['max_num_change_combos_per_reaction_eval'], | ||
num_processes=args['num_processes']) | ||
|
||
test_loader = DataLoader(test_set, batch_size=1, collate_fn=collate_rank_eval, | ||
shuffle=False, num_workers=args['num_workers']) | ||
|
||
if args['model_path'] is None: | ||
model = load_pretrained('wln_rank_uspto') | ||
else: | ||
model = WLNReactionRanking( | ||
node_in_feats=args['node_in_feats'], | ||
edge_in_feats=args['edge_in_feats'], | ||
node_hidden_feats=args['hidden_size'], | ||
num_encode_gnn_layers=args['num_encode_gnn_layers']) | ||
model.load_state_dict(torch.load( | ||
args['model_path'], map_location='cpu')['model_state_dict']) | ||
model = model.to(args['device']) | ||
|
||
prediction_summary = candidate_ranking_eval(args, model, test_loader) | ||
with open(args['result_path'] + '/test_eval.txt', 'w') as f: | ||
f.write(prediction_summary) | ||
|
||
if __name__ == '__main__': | ||
from argparse import ArgumentParser | ||
|
||
parser = ArgumentParser(description='Candidate Ranking') | ||
parser.add_argument('--model-path', type=str, default=None, | ||
help='Path to saved model. If None, we will directly evaluate ' | ||
'a pretrained model on the test set.') | ||
parser.add_argument('--result-path', type=str, default='candidate_results', | ||
help='Path to save modeling results') | ||
parser.add_argument('--test-path', type=str, default=None, | ||
help='Path to a new test set. ' | ||
'If None, we will use the default test set in USPTO.') | ||
parser.add_argument('-cmp', '--center-model-path', type=str, default=None, | ||
help='Path to a pre-trained model for reaction center prediction. ' | ||
'By default we use the official pre-trained model. If not None, ' | ||
'the model should follow the hyperparameters specified in ' | ||
'reaction_center_config.') | ||
parser.add_argument('-rcb', '--reaction-center-batch-size', type=int, default=200, | ||
help='Batch size to use for preparing candidate bonds from a trained ' | ||
'model on reaction center prediction') | ||
parser.add_argument('-np', '--num-processes', type=int, default=8, | ||
help='Number of processes to use for data pre-processing') | ||
parser.add_argument('-nw', '--num-workers', type=int, default=32, | ||
help='Number of workers to use for data loading in PyTorch data loader') | ||
args = parser.parse_args().__dict__ | ||
args.update(candidate_ranking_config) | ||
mkdir_p(args['result_path']) | ||
if torch.cuda.is_available(): | ||
args['device'] = torch.device('cuda:0') | ||
else: | ||
args['device'] = torch.device('cpu') | ||
|
||
path_to_candidate_bonds = prepare_reaction_center(args, reaction_center_config) | ||
main(args, path_to_candidate_bonds) |
Oops, something went wrong.