Skip to content

Commit

Permalink
[Model] Add SIGN model to example (dmlc#1571)
Browse files Browse the repository at this point in the history
* sign model

* mini-batch GPU eval & set default hyper-parameters

* add readme for sign

* minor
  • Loading branch information
lingfanyu authored May 31, 2020
1 parent b9e4a5b commit e979685
Show file tree
Hide file tree
Showing 3 changed files with 270 additions and 0 deletions.
28 changes: 28 additions & 0 deletions examples/pytorch/sign/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
SIGN: Scalable Inception Graph Neural Networks
===============

- paper link: [https://arxiv.org/pdf/2004.11198.pdf](https://arxiv.org/pdf/2004.11198.pdf)

Requirements
----------------

```bash
pip install requests ogb
```

Results
---------------
### [Ogbn-products](https://ogb.stanford.edu/docs/nodeprop/#ogbn-products) (Amazon co-purchase dataset)

```bash
python sign.py --dataset amazon
```

Test accuracy: mean 0.78672, std 0.00059

### Reddit
```bash
python sign.py --dataset reddit
```

Test accuracy: mean 0.96326, std 0.00010
41 changes: 41 additions & 0 deletions examples/pytorch/sign/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import torch
import numpy as np
import dgl


def load_dataset(name):
dataset = name.lower()
if dataset == "amazon":
from ogb.nodeproppred.dataset_dgl import DglNodePropPredDataset
dataset = DglNodePropPredDataset(name="ogbn-products")
splitted_idx = dataset.get_idx_split()
train_nid = splitted_idx["train"]
val_nid = splitted_idx["valid"]
test_nid = splitted_idx["test"]
g, labels = dataset[0]
labels = labels.squeeze()
n_classes = int(labels.max() - labels.min() + 1)
features = g.ndata.pop("feat").float()
elif dataset in ["reddit", "cora"]:
if dataset == "reddit":
from dgl.data import RedditDataset
data = RedditDataset(self_loop=True)
g = data.graph
else:
from dgl.data import CoraDataset
data = CoraDataset()
g = dgl.DGLGraph(data.graph)
train_mask = data.train_mask
val_mask = data.val_mask
test_mask = data.test_mask
features = torch.Tensor(data.features)
labels = torch.LongTensor(data.labels)
n_classes = data.num_labels
train_nid = torch.LongTensor(np.nonzero(train_mask)[0])
val_nid = torch.LongTensor(np.nonzero(val_mask)[0])
test_nid = torch.LongTensor(np.nonzero(test_mask)[0])
else:
print("Dataset {} is not supported".format(name))
assert(0)

return g, features, labels, n_classes, train_nid, val_nid, test_nid
201 changes: 201 additions & 0 deletions examples/pytorch/sign/sign.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dataset import load_dataset


class FeedForwardNet(nn.Module):
def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
super(FeedForwardNet, self).__init__()
self.layers = nn.ModuleList()
self.n_layers = n_layers
if n_layers == 1:
self.layers.append(nn.Linear(in_feats, out_feats))
else:
self.layers.append(nn.Linear(in_feats, hidden))
for i in range(n_layers - 2):
self.layers.append(nn.Linear(hidden, hidden))
self.layers.append(nn.Linear(hidden, out_feats))
if self.n_layers > 1:
self.prelu = nn.PReLU()
self.dropout = nn.Dropout(dropout)
self.reset_parameters()

def reset_parameters(self):
gain = nn.init.calculate_gain("relu")
for layer in self.layers:
nn.init.xavier_uniform_(layer.weight, gain=gain)
nn.init.zeros_(layer.bias)

def forward(self, x):
for layer_id, layer in enumerate(self.layers):
x = layer(x)
if layer_id < self.n_layers - 1:
x = self.dropout(self.prelu(x))
return x


class Model(nn.Module):
def __init__(self, in_feats, hidden, out_feats, R, n_layers, dropout):
super(Model, self).__init__()
self.dropout = nn.Dropout(dropout)
self.prelu = nn.PReLU()
self.inception_ffs = nn.ModuleList()
for hop in range(R + 1):
self.inception_ffs.append(
FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout))
# self.linear = nn.Linear(hidden * (R + 1), out_feats)
self.project = FeedForwardNet((R + 1) * hidden, hidden, out_feats,
n_layers, dropout)

def forward(self, feats):
hidden = []
for feat, ff in zip(feats, self.inception_ffs):
hidden.append(ff(feat))
out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
return out


def calc_weight(g, device):
"""
Compute row_normalized(D^(-1/2)AD^(-1/2))
"""
with g.local_scope():
# compute D^(-0.5)*D(-1/2), assuming A is Identity
g.ndata["in_deg"] = g.in_degrees().float().to(device).pow(-0.5)
g.ndata["out_deg"] = g.out_degrees().float().to(device).pow(-0.5)
g.apply_edges(fn.u_mul_v("out_deg", "in_deg", "weight"))
# row-normalize weight
g.update_all(fn.copy_e("weight", "msg"), fn.sum("msg", "norm"))
g.apply_edges(fn.e_div_v("weight", "norm", "weight"))
return g.edata["weight"]


def preprocess(g, features, args, device):
"""
Pre-compute the average of n-th hop neighbors
"""
with torch.no_grad():
g.edata["weight"] = calc_weight(g, device)
g.ndata["feat_0"] = features.to(device)
for hop in range(1, args.R + 1):
g.update_all(fn.u_mul_e(f"feat_{hop-1}", "weight", "msg"),
fn.sum("msg", f"feat_{hop}"))
res = []
for hop in range(args.R + 1):
res.append(g.ndata.pop(f"feat_{hop}"))
return res


def prepare_data(device, args):
data = load_dataset(args.dataset)
g, features, labels, n_classes, train_nid, val_nid, test_nid = data
in_feats = features.shape[1]
feats = preprocess(g, features, args, device)
# move to device
labels = labels.to(device)
train_nid = train_nid.to(device)
val_nid = val_nid.to(device)
test_nid = test_nid.to(device)
train_feats = [x[train_nid] for x in feats]
train_labels = labels[train_nid]
return feats, labels, train_feats, train_labels, in_feats, \
n_classes, train_nid, val_nid, test_nid


def evaluate(epoch, args, model, feats, labels, train, val, test):
with torch.no_grad():
batch_size = args.eval_batch_size
if batch_size <= 0:
pred = model(feats)
else:
pred = []
num_nodes = labels.shape[0]
n_batch = (num_nodes + batch_size - 1) // batch_size
for i in range(n_batch):
batch_start = i * batch_size
batch_end = min((i + 1) * batch_size, num_nodes)
batch_feats = [feat[batch_start: batch_end] for feat in feats]
pred.append(model(batch_feats))
pred = torch.cat(pred)

pred = torch.argmax(pred, dim=1)
correct = (pred == labels).float()
train_acc = correct[train].sum() / len(train)
val_acc = correct[val].sum() / len(val)
test_acc = correct[test].sum() / len(test)
return train_acc, val_acc, test_acc


def main(args):
if args.gpu < 0:
device = "cpu"
else:
device = "cuda:{}".format(args.gpu)

data = prepare_data(device, args)
feats, labels, train_feats, train_labels, in_size, num_classes, \
train_nid, val_nid, test_nid = data

model = Model(in_size, args.num_hidden, num_classes, args.R, args.ff_layer,
args.dropout)
model = model.to(device)
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)

best_epoch = 0
best_val = 0
best_test = 0

for epoch in range(1, args.num_epochs + 1):
start = time.time()
model.train()
loss = loss_fcn(model(train_feats), train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch % args.eval_every == 0:
model.eval()
acc = evaluate(epoch, args, model, feats, labels,
train_nid, val_nid, test_nid)
end = time.time()
log = "Epoch {}, Times(s): {:.4f}".format(epoch, end - start)
log += ", Accuracy: Train {:.4f}, Val {:.4f}, Test {:.4f}" \
.format(*acc)
print(log)
if acc[1] > best_val:
best_val = acc[1]
best_epoch = epoch
best_test = acc[2]

print("Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
best_epoch, best_val, best_test))


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SIGN")
parser.add_argument("--num-epochs", type=int, default=1000)
parser.add_argument("--num-hidden", type=int, default=256)
parser.add_argument("--R", type=int, default=3,
help="number of hops")
parser.add_argument("--lr", type=float, default=0.003)
parser.add_argument("--dataset", type=str, default="amazon")
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--weight-decay", type=float, default=0)
parser.add_argument("--eval-every", type=int, default=50)
parser.add_argument("--eval-batch-size", type=int, default=250000,
help="evaluation batch size, -1 for full batch")
parser.add_argument("--ff-layer", type=int, default=2,
help="number of feed-forward layers")
args = parser.parse_args()

print(args)
main(args)

0 comments on commit e979685

Please sign in to comment.