Skip to content

Commit

Permalink
copy detection
Browse files Browse the repository at this point in the history
  • Loading branch information
Mathilde Caron committed Jul 16, 2021
1 parent 30aedce commit ba9edd1
Show file tree
Hide file tree
Showing 4 changed files with 368 additions and 1 deletion.
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,18 @@ Oxford:
python -m torch.distributed.launch --use_env --nproc_per_node=1 eval_image_retrieval.py --imsize 224 --multiscale 0 --data_path /path/to/revisited_paris_oxford/ --dataset roxford5k
```

## Evaluation: Copy detection on Copydays
Step 1: Prepare [Copydays dataset](https://lear.inrialpes.fr/~jegou/data.php#copydays).

Step 2 (opt): Prepare a set of image distractors and a set of images on which to learn the whitening operator.
In our paper, we use 10k random images from YFCC100M as distractors and 20k random images from YFCC100M (different from the distractors) for computing the whitening operation.

Step 3: Run copy detection:
```
python -m torch.distributed.launch --use_env --nproc_per_node=1 eval_copy_detection.py --data_path /path/to/copydays/ --whitening_path /path/to/whitening_data/ --distractors_path /path/to/distractors/
```
We report result on the strong subset. For example in the stdout from the command above we get: `eval on strong mAP=0.858`.

## License
This repository is released under the Apache 2.0 license as found in the [LICENSE](LICENSE) file.

Expand Down
301 changes: 301 additions & 0 deletions eval_copy_detection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pickle
import argparse

import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import models as torchvision_models
from torchvision import transforms as pth_transforms
from PIL import Image, ImageFile
import numpy as np

import utils
import vision_transformer as vits
from eval_knn import extract_features


class CopydaysDataset():
def __init__(self, basedir):
self.basedir = basedir
self.block_names = (
['original', 'strong'] +
['jpegqual/%d' % i for i in
[3, 5, 8, 10, 15, 20, 30, 50, 75]] +
['crops/%d' % i for i in
[10, 15, 20, 30, 40, 50, 60, 70, 80]])
self.nblocks = len(self.block_names)

self.query_blocks = range(self.nblocks)
self.q_block_sizes = np.ones(self.nblocks, dtype=int) * 157
self.q_block_sizes[1] = 229
# search only among originals
self.database_blocks = [0]

def get_block(self, i):
dirname = self.basedir + '/' + self.block_names[i]
fnames = [dirname + '/' + fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]
return fnames

def get_block_filenames(self, subdir_name):
dirname = self.basedir + '/' + subdir_name
return [fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]

def eval_result(self, ids, distances):
j0 = 0
for i in range(self.nblocks):
j1 = j0 + self.q_block_sizes[i]
block_name = self.block_names[i]
I = ids[j0:j1] # block size
sum_AP = 0
if block_name != 'strong':
# 1:1 mapping of files to names
positives_per_query = [[i] for i in range(j1 - j0)]
else:
originals = self.get_block_filenames('original')
strongs = self.get_block_filenames('strong')

# check if prefixes match
positives_per_query = [
[j for j, bname in enumerate(originals)
if bname[:4] == qname[:4]]
for qname in strongs]

for qno, Iline in enumerate(I):
positives = positives_per_query[qno]
ranks = []
for rank, bno in enumerate(Iline):
if bno in positives:
ranks.append(rank)
sum_AP += score_ap_from_ranks_1(ranks, len(positives))

print("eval on %s mAP=%.3f" % (
block_name, sum_AP / (j1 - j0)))
j0 = j1


# from the Holidays evaluation package
def score_ap_from_ranks_1(ranks, nres):
""" Compute the average precision of one search.
ranks = ordered list of ranks of true positives
nres = total number of positives in dataset
"""

# accumulate trapezoids in PR-plot
ap = 0.0

# All have an x-size of:
recall_step = 1.0 / nres

for ntp, rank in enumerate(ranks):

# y-size on left side of trapezoid:
# ntp = nb of true positives so far
# rank = nb of retrieved items so far
if rank == 0:
precision_0 = 1.0
else:
precision_0 = ntp / float(rank)

# y-size on right side of trapezoid:
# ntp and rank are increased by one
precision_1 = (ntp + 1) / float(rank + 1)

ap += (precision_1 + precision_0) * recall_step / 2.0

return ap


class ImgListDataset(torch.utils.data.Dataset):
def __init__(self, img_list, transform=None):
self.samples = img_list
self.transform = transform

def __getitem__(self, i):
with open(self.samples[i], 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img, i

def __len__(self):
return len(self.samples)


def is_image_file(s):
ext = s.split(".")[-1]
if ext in ['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif', 'tiff', 'webp']:
return True
return False


@torch.no_grad()
def extract_features(image_list, model, args):
transform = pth_transforms.Compose([
pth_transforms.Resize((args.imsize, args.imsize), interpolation=3),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
tempdataset = ImgListDataset(image_list, transform=transform)
data_loader = torch.utils.data.DataLoader(tempdataset, batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers, drop_last=False,
sampler=torch.utils.data.DistributedSampler(tempdataset, shuffle=False))
features = None
for samples, index in utils.MetricLogger(delimiter=" ").log_every(data_loader, 10):
samples, index = samples.cuda(non_blocking=True), index.cuda(non_blocking=True)
feats = model.get_intermediate_layers(samples, n=1)[0].clone()

cls_output_token = feats[:, 0, :] # [CLS] token
# GeM with exponent 4 for output patch tokens
b, h, w, d = len(samples), int(samples.shape[-2] / model.patch_embed.patch_size), int(samples.shape[-1] / model.patch_embed.patch_size), feats.shape[-1]
feats = feats[:, 1:, :].reshape(b, h, w, d)
feats = feats.clamp(min=1e-6).permute(0, 3, 1, 2)
feats = nn.functional.avg_pool2d(feats.pow(4), (h, w)).pow(1. / 4).reshape(b, -1)
# concatenate [CLS] token and GeM pooled patch tokens
feats = torch.cat((cls_output_token, feats), dim=1)

# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
if args.use_cuda:
features = features.cuda(non_blocking=True)

# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)

# share features between processes
feats_all = torch.empty(dist.get_world_size(), feats.size(0), feats.size(1),
dtype=feats.dtype, device=feats.device)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()

# update storage feature matrix
if dist.get_rank() == 0:
if args.use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features # features is still None for every rank which is not 0 (main)


if __name__ == '__main__':
parser = argparse.ArgumentParser('Copy detection on Copydays')
parser.add_argument('--data_path', default='/path/to/copydays/', type=str,
help="See https://lear.inrialpes.fr/~jegou/data.php#copydays")
parser.add_argument('--whitening_path', default='/path/to/whitening_data/', type=str,
help="""Path to directory with images used for computing the whitening operator.
In our paper, we use 20k random images from YFCC100M.""")
parser.add_argument('--distractors_path', default='/path/to/distractors/', type=str,
help="Path to directory with distractors images. In our paper, we use 10k random images from YFCC100M.")
parser.add_argument('--imsize', default=320, type=int, help='Image size (square image)')
parser.add_argument('--batch_size_per_gpu', default=16, type=int, help='Per-GPU batch-size')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
parser.add_argument('--arch', default='vit_base', type=str, help='Architecture')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
args = parser.parse_args()

utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True

# ============ building network ... ============
if "vit" in args.arch:
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
else:
print(f"Architecture {args.arch} non supported")
sys.exit(1)
if args.use_cuda:
model.cuda()
model.eval()
utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)

dataset = CopydaysDataset(args.data_path)

# ============ Extract features ... ============
# extract features for queries
queries = []
for q in dataset.query_blocks:
queries.append(extract_features(dataset.get_block(q), model, args))
if utils.get_rank() == 0:
queries = torch.cat(queries)
print(f"Extraction of queries features done. Shape: {queries.shape}")

# extract features for database
database = []
for b in dataset.database_blocks:
database.append(extract_features(dataset.get_block(b), model, args))

# extract features for distractors
if os.path.isdir(args.distractors_path):
print("Using distractors...")
list_distractors = [os.path.join(args.distractors_path, s) for s in os.listdir(args.distractors_path) if is_image_file(s)]
database.append(extract_features(list_distractors, model, args))
if utils.get_rank() == 0:
database = torch.cat(database)
print(f"Extraction of database and distractors features done. Shape: {database.shape}")

# ============ Whitening ... ============
if os.path.isdir(args.whitening_path):
print(f"Extracting features on images from {args.whitening_path} for learning the whitening operator.")
list_whit = [os.path.join(args.whitening_path, s) for s in os.listdir(args.whitening_path) if is_image_file(s)]
features_for_whitening = extract_features(list_whit, model, args)
if utils.get_rank() == 0:
# center
mean_feature = torch.mean(features_for_whitening, dim=0)
database -= mean_feature
queries -= mean_feature
pca = utils.PCA(dim=database.shape[-1], whit=0.5)
# compute covariance
cov = torch.mm(features_for_whitening.T, features_for_whitening) / features_for_whitening.shape[0]
pca.train_pca(cov.cpu().numpy())
database = pca.apply(database)
queries = pca.apply(queries)

# ============ Copy detection ... ============
if utils.get_rank() == 0:
# l2 normalize the features
database = nn.functional.normalize(database, dim=1, p=2)
queries = nn.functional.normalize(queries, dim=1, p=2)

# similarity
similarity = torch.mm(queries, database.T)
distances, indices = similarity.topk(20, largest=True, sorted=True)

# evaluate
retrieved = dataset.eval_result(indices, distances)
dist.barrier()

2 changes: 1 addition & 1 deletion eval_image_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def config_qimname(cfg, i):
parser.add_argument('--data_path', default='/path/to/revisited_paris_oxford/', type=str)
parser.add_argument('--dataset', default='roxford5k', type=str, choices=['roxford5k', 'rparis6k'])
parser.add_argument('--multiscale', default=False, type=utils.bool_flag)
parser.add_argument('--imsize', default=224, type=int, help='Image size (square)')
parser.add_argument('--imsize', default=224, type=int, help='Image size')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
Expand Down
54 changes: 54 additions & 0 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,6 +631,60 @@ def has_batchnorms(model):
return False


class PCA():
"""
Class to compute and apply PCA.
"""
def __init__(self, dim=256, whit=0.5):
self.dim = dim
self.whit = whit
self.mean = None

def train_pca(self, cov):
"""
Takes a covariance matrix (np.ndarray) as input.
"""
d, v = np.linalg.eigh(cov)
eps = d.max() * 1e-5
n_0 = (d < eps).sum()
if n_0 > 0:
d[d < eps] = eps

# total energy
totenergy = d.sum()

# sort eigenvectors with eigenvalues order
idx = np.argsort(d)[::-1][:self.dim]
d = d[idx]
v = v[:, idx]

print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0))

# for the whitening
d = np.diag(1. / d**self.whit)

# principal components
self.dvt = np.dot(d, v.T)

def apply(self, x):
# input is from numpy
if isinstance(x, np.ndarray):
if self.mean is not None:
x -= self.mean
return np.dot(self.dvt, x.T).T

# input is from torch and is on GPU
if x.is_cuda:
if self.mean is not None:
x -= torch.cuda.FloatTensor(self.mean)
return torch.mm(torch.cuda.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)

# input if from torch, on CPU
if self.mean is not None:
x -= torch.FloatTensor(self.mean)
return torch.mm(torch.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)


def compute_ap(ranks, nres):
"""
Computes average precision for given ranked indexes.
Expand Down

0 comments on commit ba9edd1

Please sign in to comment.