This repo is modified version for this code, which is source code for CVPR2018 paper.
- PyTorch: 0.2 version (not test for other version)
pip3 install http://download.pytorch.org/whl/cu80/torch-0.2.0.post2-cp35-cp35m-manylinux1_x86_64.whl
pip3 install torchvision
- Python 3
- FFmpeg
wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
tar xvf ffmpeg-release-64bit-static.tar.xz
cd ./ffmpeg-3.3.3-64bit-static/; sudo cp ffmpeg ffprobe /usr/local/bin;
- Download videos and train/test splits from this site
- Use FFmpeg to extract frames from raw videos
python3 datasets/video_jpg_ucf101.py ucf101_video_dir ucf101_frames_dir
- Generate train/test video list
python3 datasets/ucf101_get_list.py ucf101_frames_dir splits/ucf101_train01_raw.txt
python3 datasets/ucf101_get_list.py ucf101_frames_dir splits/ucf101_test01_raw.txt
- finetune model from kinetics pretrain
mkdir logs; mkdir model;
bash ucf101_train.sh
- result
- Download videos and train/test splits from this site
- Use FFmpeg to extract frames from raw videos
python3 datasets/video_jpg_hmdb51.py hmdb51_video_dir hmdb51_frames_dir
- Generate train/test video list
python3 datasets/hmdb51_get_list.py hmdb51_frames_dir splits/hmdb51_train01_raw.txt
python3 datasets/hmdb51_get_list.py hmdb51_frames_dir splits/hmdb51_test01_raw.txt
- finetune model from kinetics pretrain
mkdir logs; mkdir model;
bash hmdb51_train.sh
- result
- clip level: 53.45%
- video leval: